Object-Capability Programming Languages on the
seL4 Capability-based Microkernel

Stewart Webb
Student ID: 584957

Email: sjwebb@student.unimelb.edu.au

Supervised by
Toby Murray

Thesis submitted to

The University of Melbourne

in partial fulfilment of the

requirements for the degree of
MASTER OF SCIENCE (COMPUTER SCIENCE)

School of Computing and Information Systems

The University of Melbourne

November 2022

Declaration of Authorship

I certify that

« this thesis does not incorporate without acknowledgement any material
previously submitted for a degree or diploma in any university; and that
to the best of my knowledge and belief it does not contain any material
previously published or written by another person where due reference is

not made in the text.

« where necessary I have received clearance for this research from the Uni-
versity’s Ethics Committee and have submitted all required data to the School
(N/A)

« this thesis is fewer than 25,000 words in length (excluding text in figures,

table, bibliographies and appendices).

Acknowledgements

I would like to thank:

« Toby Murray, my project supervisor, for providing me the space within
which to take on a systems project at Melb Uni, and all his time, expertise,
and good conversation during our catchup meetings across the timeframe

of the project.
« My fellow course-mates:

— Matt Farrugia-Roberts, whose support, ‘Shut-up-and-write’ session
organising, and encouragement throughout the final thesis process
was extremely helpful and valuable for getting everything I had worked

on down into this thesis.

— James Barnes and Amy Mendelsohn, for their friendship and support
in trying to make and support a social environment within the Master
of Computer Science degree (and Amy’s help in practising and prepar-

ing the presentation component of the project),

— Eleanor McMurtry, Ben Frengley, Isitha Piyumal Subasinghe, and again
James, for their classmate chummery and extensive conversations on

programming and computer science topics.

+ Gernot Heiser and the UNSW Trustworthy Systems group for the initial
project idea, and again, a context in Australia to perform systems research,
and Kent McLeod for answering so many of my questions via the selL4-

external Mattermost chat.

« Timothy Roscoe, David Cock, and Daniel Schwyn from the ETH Zurich
Systems group, for running the Advanced Operating Systems subject that
I was lucky enough to be able to take on exchange in 2019, which served
as my leg-up into systems research, and without which I would never have

been practically able to work on anything covered in this thesis.

ii

My classmates from the Advanced OS class project in Zurich - Silvan Laubli,
Cédric Neukom, and Benjamin Schmid, whose C and algorithms expertise
and hard work were invaluable for making it through to the end of the

subject.

Sylvan Clebsch, whose thesis and work on Pony ended up serving as the
basis for a large component of this project, and all the other Pony develop-
ers, including Sean T Allen for his very helpful responses in the Pony Zulip
chat.

Mark S. Miller, for his extensive research on object-capability languages
that much of this project was based on, and to him and other members
of the cap-talk Google Groups mailing list for discussion and resources

relating to object-capability languages.

Ryan Crosby and Harry Ramadan from Unique Micro Design for their of-
fers of proof-reading and subsequent feedback, and keeping me employed
throughout the duration of my degree - and also to Ryan for many produc-

tive chats about OS and PL topics.

Last but not least, my family and friends for all their support throughout

what was a very difficult degree and time amidst completing this project.

1ii

Contents

List of Figures vi
Abstract 1
1 seL4 + OS Capabilities Background 3
1.1 Operating System Capabilities 4
1.2 selL4 System Calls and Programming Model 7
1.3 sel4 Capabilities L 9
14 sel4 ProtectionDomains 12
1.5 seL4 IPC and blocking semantics 14
1.6 selL4 boot process + root task capability bootstrap 15
1.7 ‘Memory Server’ example 18
2 Object-Capability Language background 21
2.1 Confined Execution, 22
2.2 Vatsand remoteobjects 23
3 Project Motivation and current selL4 tooling review 24
4 Survey of Object-Capability Languages and appropriateness for map-

ping 27
41 E 28
4.2 Jessie /Secure EcmaScript L0000 30
43 SHILL 32
44 Dala. 33
45 Pony e 34
4.6 Otherrelatedart 35

4.6.1 Rust- cap-stdand ferroscrates 35

iv

Pony Background

5.1 The Pony language + executionmodel
5.2 Compilation model and 1ibponyrt runtime
5.3 Runtime componentsand API
54 DPonycapabilities o Lo
5.5 Standard Library authorities
5.6 Sample Pony program L.
5.7 ‘Causal’ messaging
58 Distributed Pony’

4.6.2 WebAssembly + WebAssembly System Interface (WASI)

4.6.3 Microsoft Singularity Project

Comparison of related concepts in Pony and seL4

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Synchronous v.s. asynchronous models
Message-passing message size
Pony allocation sizes v.s. seL4 objectsizes.
Memory Address spaces L.
Capability enforcement / Trust boundaries
API contracts over message-passing channels

Authority for memory allocation

Possible useful Pony ocap models for seL4 programming

7.1
7.2
7.3
7.4

Handing off/around seL4 IPC endpoint(s) for talking to objects . .

Remote actor communication through message pump endpoint

Handing off physical memory that containsdata

Embed sel4 capability types into Pony types

Porting the Pony runtime environment to seL4

8.1 Which runtime components to port first? Analysis of the main ()

procedure of a Pony program
8.2 Step 1: base selL4 environment L.
8.3 Step 2: porting the allocator
8.4 Step 3: porting the SPMC messages queues
8.5 Future steps: scheduling, actor heaps, garbage collection
Conclusions

36
38

39
40
42
44
46
48
51
53
54

55
56
59
60
61
62
65
69

70
71
72
76
77

78

79
83
86
94
98

99

List of Figures

1.1 A simple example of capability-based resource control: file de-
scriptorsonLinux oL oo 4
1.2 selL4 System Call / Kernel API. Adapted from the seL4 manual [66],
with simplified argument names and out keywords to indicate argu-
ments that the call returns output data through 8
1.3 (Non-exhaustive) Overview of different capability types on seL4 . 9
1.4 (Non-exhaustive) Overview of various API calls that can be made
against the capability types of Figure 1.3 10
1.5 seL4 CNode methods with abbreviated argument pseudo types.
Adapted from §3.1.2 and §10.3.1 of the seL4 manual [66] 11
1.6 Fixed/‘well-known’ capability addresses for capabilities set up for
the root task as part of the seL4 boot process. Sourced from 1ibsel4/
include/sel4/bootinfo_types.h in the seL4 kernel codebase 16
1.7 C types showing the layout of data within the seL4 ‘bootinfo’
struct passed to the root task of the system. Sourced from 1libsel4/
include/sel4/bootinfo_types.h in the seL4 kernel codebase 17
1.8 MemoryInterface CAmKES component and interface from Google
KataOS. The format of char request[] is detailled in Figure 1.9
Sourced from the KataOS repository https://github. com/AmbiML/
sparrow-kata-full/tree/main/apps/system/components/MemoryManager 19
1.9 Assorted snippets of the MemoryManager component from KataOS,
showing its actual Rust-typing interface. Sourced from the KataOS
repositoryhttps://github.com/AmbiML/sparrow-kata-full/
tree/main/apps/system/components/MemoryManager 20

3.1 Sample capDL spec Sourced from the capDL documentation at

https://docs.seld.systems/projects/capdl/ 25
5.1 Overview of Pony actor messaging at runtime 41
5.2 Overview of the Pony compiler, runtime, and output programs . . 42
5.3 1libponyrt runtime functions 44

54 Components of the Pony runtime Adapted from Figure A.1 of
ClebschThesis 44

vi

https://github.com/AmbiML/sparrow-kata-full/tree/main/apps/system/components/MemoryManager
https://github.com/AmbiML/sparrow-kata-full/tree/main/apps/system/components/MemoryManager
https://github.com/AmbiML/sparrow-kata-full/tree/main/apps/system/components/MemoryManager
https://github.com/AmbiML/sparrow-kata-full/tree/main/apps/system/components/MemoryManager
https://docs.sel4.systems/projects/capdl/

55

5.6

5.7

6.1

6.2

6.3

7.1

8.1
8.2

8.3

8.4

Authority primitives and assorted base types for the net package

of the Pony standard library. Adapted from the Pony standard
library sources (packages/netin[62]) 49
Authority primitives for the files package of the Pony standard
library. The FilePath class is shown with its constructor to illus-

trate that the FileAuth capability is required as an argument for
interaction with the filesystem. Adapted from the Pony standard
library sources (packages/filesin[62]) 50
Authority primitives for the serialise package of the Pony stan-

dard library. The constructor and various methods of the Serialised
class are shown to illustrate that capabilities are required for the
various serialisation operations. Adapted from the Pony standard
library sources (packages/serialisein[62]). 50

Pony runtime’s message-queue push function, used for all mes-

sage passing Adapted into psuedo-algorithmic form from messageq_push
in libponyrt/actor/messageq.c in the ponyc repo [62] 56
Example CAmKES spec for a DHCP server, showing the C-like API
defined in the DHCP procedure block. Adapted from camkes/apps/dhcp
in the main / example apps CAmKES repository (https://github.

com/seld/camkes) 66
Examples of the infix ! / "eventually" operator from Dr. SES and
its ‘Q’ library. Taken directly from [47, §2.4, page 7] 67

Example of seL4 threads and endpoints required for cross-domain
message queue message-passing support for a quad-core, quad-
domain Pony runtime L. 75

Disassembly of the Cmain () procedure of a compiled Pony program 80
Description of the various levels of memory space sources used in
the Pony pool allocator Adapted from code in mem/pool.c in the
libponyrt folder of the ponycrepo [62] 87
Existing ponyint_virt_alloc implementation from the release
Pony runtime Taken from libponyrt in the ponyc repo [62] . . . 90
ponyint_virt_alloc implementation developed for the seL4 en-
vironment oo oL 92

vii

https://github.com/seL4/camkes
https://github.com/seL4/camkes

Abstract

The seL4 microkernel provides one of the highest levels of security assurances
possible for an operating system via its machine-checked proofs of properties such
as integrity, authority confinement, and information-flow non-interference. The
key mechanism underlying these proofs and assurances is its capability system for
resource management, which is used to describe all memory and communication
channels between user-level components of an selL.4 system.

Object Capability programming languages make similar use of a capability
security model for expressing authority propagation throughout code. In these
languages, object references are viewed as the capabilities, such that having a
reference to an object represents the rights to use and control that object, with
the assumption that object references cannot be invented or forged (for example
by dereferencing arbitrary memory addresses). Security mechanisms and poli-
cies can become expressed through object-oriented programming patterns such
as object proxies, and execution contexts usually specify ways to be launched
with initial capabilities, or channels to obtain subsequent capabilities via once
the program starts.

Whilst many tools have been developed for building systems with seL4 such
as capDL and CAmKES, they rely on static distribution of capabilities upfront at
project build time, and in general do not provide for dynamic capability trans-
fer once the system has started. In practice, for runtime/dynamic access control,
many systems revert to standard POSIX layers where ambient authority for re-
source access returns, throwing out the fine-grained access control possibilities
that come for free with a capability model. In theory, an object capability language
would provide a better means for building dynamic capability systems, especially
if such a language can have sel.4 capabilities for kernel objects mapped into it.

Many Object Capability languages exist (E, Oz-E, Jessie/SES, SHILL, Pony,

Dala) but their purposes/research goals are varied and their implementations can

rest on many layers of software. This research surveys various object capability
languages from the research community and evaluates their appropriateness for
mapping to seL4. The Pony language is examined as a frontrunner for an imple-
mentation due to its C-like performance and relatively minimal set of language
implementation dependencies. However many trade-offs are still involved due to
the minimal mechanisms provided by seL4 (compared to more prevalent mono-
lithic kernels), which are explored with an aim to more formally detail and com-
pare the properties and limitations of both selL4 and object capability language

capability models and mechanisms.

Chapter 1

sel.4 + OS Capabilities
Background

As this thesis focuses primarily on the seL4 microkernel and its capability sub-

system, some background on both must be given first.

1.1 Operating System Capabilities

Capabilities are an old operating systems concept for providing a security model
for resource access control, stemming back to an initial definition from 1965 [22],
and come with a rich lineage of associated concepts and research. They center
around the idea of ‘unique, unforgeable tokens’ used to represent both the access
to a resource, and the type of access rights granted. If the tokens are unforgeable,
then security is maintained, as subjects cannot gain access to any resource unless
they were explicitly provided a capability for the resource.

A simple example of how capabilities are used in an operating system context
can be found in the form of file descriptors from Linux/UNIX systems. Figure 1.1
shows an example of this. Opening a file grants a process a file descriptor num-
ber, which is used as the ‘token’ for all operating system operations (i.e. system
calls) relating to that file - e.g. the read() system call. This ‘token’ can never
be forged, because the kernel always checks that the passed number is indeed a
valid file descriptor number, by checking against its file descriptor table, which is

a protected kernel-space datastructure.

#include <fcntl.h>
int fd;
char buf [50];

fd = open("test.txt", O_RDONLY);
int bytes_read = read(fd , buf, 10);

Figure 1.1: A simple example of capability-based resource control: file descriptors
on Linux

This Linux example however also highlights another key issue often discussed
in the context of capability models - the issue of ambient authority. In the example
above, the program has an implicit ability to interact with the entire filesystem and
acquire rights to files due to open() being an implicit global that does not oper-
ate using any capability arguments, or rather that the path argument is simply the
name of a file, and not anything that designates authority - i.e. anything to do with
the program’s right to use a file. Instead, the source of authority is delegated to
the user running the program, as on Linux/UNIX systems, file access permissions
are dictated by Access Control Lists which are evaluated against the UID of the
running process. This consequently means that the program has launched with

the implicit ability to access any file the running user has access to. Requesting

Linux programs to operate on specific files is often done via command-line ar-
guments that are again just object names, but these do not constitute capabilities
that denote the right to use a file.

The presence of ambient authority invariably leads to the possibility of the
‘Confused Deputy’ problem [34], where programs can easily be tricked into per-
forming operations that the program author or user might not have expected
should be possible. The Confused Deputy paper in particular focuses on an ex-
ample involving file name arguments similar to that outlined above. Capability-
based systems by nature of their construction eliminate this category of problem
by making the rights for resource usage inherently more explicit.

Capabilities and the avoidance of ambient authority also give way to another
related security concept called the Principle of Least Authority - the idea that a
program should only ever be given the absolute minimum amount of rights to
accomplish the task it is being invoked to do, and this is a important idea central
to seL4’s security model. A good more common modern example of this is the
advent of increasingly granular permission controls being developed within mo-
bile operating systems such as iOS and Android - in earlier versions, apps often
had to be given access to full photo libraries or even the whole filesystem ! to
access a users camera photos, whereas it is increasingly more common for photo
access to be granted by a trusted OS ‘file picker’ component, which in the end
only hands the running application the right to operate on one specific file that
the user themselves selected.

Several capability-based operating systems / kernels have been created through-
out the years, including KeyKOS, EROS, seL4, and Barrelfish. There are also a few

different ways capabilities can be implemented, as outlined in [49, §1.2]:

« Tagged Capabilities: where the hardware or execution environment main-
tains capability data within actual user-level references, but mandates through
controlled access that the capability-related metadata can never be altered

in an unauthroized manner

« Partitioned Capabilities: where the kernel stores the actual data associ-
ated with capabilities in a protected storage area, and acts as the trusted
arbitrator over them, checking that user-level references are correct every
time they are invoked. This is the model that Barrelfish and seL4 use, and

that is shown by the Linux file descriptor example above (??)

!see notes on READ_EXTERNAL_STORAGE and WRITE_EXTERNAL_STORAGE deprecation in [52]

+ Sparse Capabilities: where capabilities are essentially just random num-
bers in an very large number space, and ‘unforgeable’ in the practical sense

that it is infeasible to guess any valid capability number.

The Barrelfish OS in particular contains a capability system derived from seL4
itself [49, Abstract, §1.3], that is also more generalised, as capability types them-
selves are defined using a domain-specific language called Hamlet [21]. On seL4
and Barrelfish, as part of their style of being ‘microkernel’ operating systems
where as much implementation logic is pushed out to userspace as possible, capa-
bilities are used as the basis for describing all resources in the system, including
physical and virtual memory.

For this project, the focus is specifically on the current seL4 microkernel and
its particular capability system. Background on seL4 relevant for the rest of the

thesis will be covered in the next sections.

1.2 seL4 System Calls and Programming Model

For any operating system kernel, the main interface through which the system is
controlled is the system call interface. For sel4, the system call API is modelled
such that almost every call is a capability invocation - and thus the system call API
is the primary means for interacting with seL4 capabilities.

Kernels typically start up by executing some one-time initializing code that
will scan and initialize the available system hardware as required, and set up
kernel datastructures in main memory, to support the kernel’s operation and
execution environment, before finally constructing a first ‘root’ userspace pro-
cess/task/thread that control is finally handed over to. At this point the kernel
can be considered ‘booted’, and what happens next will mostly depend on the
code of the first process and how it interacts with the kernel through the system
call interface, with interrupts from hardware (including any hardware timers used
for pre-emptive scheduling) being the only main other thing that can cause any
kernel behaviour to kick in again.

System calls can be implemented in a number of different ways, but are usu-
ally performed by setting values into a few specific CPU registers to identify the
particular system call wanted, and the arguments to pass to it, before issuing a
‘trap’ or ‘syscall’ CPU instruction, to cause the CPU to switch into kernel mode
and call the appropriate syscall handling code within the kernel that was set up
at boot time.

A survey of the Linux system call API at the time of writing shows 313 differ-
ent numbered system calls.

seL4 in contrast has only eight system calls, as part of its minimalist micro-
kernel design (see Figure 1.2).

Whilst the sel4 system call API only lists a small number of calls, control of
the system is described more by the fact that Send () / Call () family of calls are
handled differently depending on the type of capability being addressed. Using
Send () or Call() on a capability is termed ‘invoking’ the capability, and ‘meth-
ods’ for capability types are defined as part of the programming model, which are
addressed / invoked on the basis of the contents of the message argument deliv-
ered when making the system call. The message argument can thus be considered
an implementation detail of sorts for this capability invocation APL

Most interaction with the seL4 kernel and kernel objects is done using the

libsel4 convenience library, that takes care of the marshalling work required for

1. sel4_Yield()

2. seL4_Send(capability, message)

3. seL4_Recv(endpoint_or_notification_cap, out sender_info)
4. seL4_NBSend(capability, message)

5. seL4_NBRecv(endpoint_or_notification_cap, out
sender_info))

6. selL4_Call(capability, message)
7. seL4_Reply (message)

8. seL4_ReplyRecv(recv_endpoint_or_notification_cap,
reply_message, out recv_sender_info)

Figure 1.2: seL4 System Call / Kernel API.
Adapted from the seL4 manual [66], with simplified argument names and out keywords
to indicate arguments that the call returns output data through

making the underlying syscall, and provides a function for each ‘method’ that can
be invoked on the types of capabilities involved in the system. These capabilities

and methods are described in the next section.

1.3 seL4 Capabilities

The number of types of capabilties in an sel4 system depends on the particu-
lar target architecture/platform the kernel is being built for, and also on whether
certain kernel features are enabled. However in general there are 10 or so main
capability types that all systems will have and make use of: ‘Untyped’s to repre-
sent usable areas of physical memory, ‘CNode’s for storing capabilities, Thread
control blocks for defining execution contexts, Endpoints for IPC, Notifications
for signalling, 2 types for controlling and handling interrupts, and 3 or so types
representing pagetable data structures for the target platform in question. An ex-
ample, non-exhaustive overview of these types is given in Figure 1.3, and some of

the associated ‘methods’ available on them are shown in Figure 1.4.

IRQControl
Untyped
IRQHandler

X86_PageTable X86_PageDirectory X86_Page CNode ThreadControlBlock SchedContext SchedControl
[size] [# slots]
AArC32 l 3 l l l l boma
H [ARM_PageDirectcry}] [ARM_PageTable} { ARM_Page Endpoint Notification
: : [size]

{AArch64 : Legend

; :) Presentonall
ARMiPageDlreclory] { ARMﬁPageUpperDireclory} configs/architectures

MCS kernel only

86 platfc I
H ARM_VSpace : (] x86 platforms only
: H () ARM platforms only

Figure 1.3: (Non-exhaustive) Overview of different capability types on seL4

¥

Schedonio

SeL X85 PageDioctory_Unmap)

(AFo1_PageDiectory Ar_pageTatle

Figure 1.4: (Non-exhaustive) Overview of various API calls that can be made
against the capability types of Figure 1.3

Many of these methods also involve passing other capabilities as arguments -
for example, the virtual page mapping methods involve calling Page_Map meth-
ods on page capabilities, and passing the VSpace that the page is to be mapped
into as an argument.

One of the key methods, probably used all in seL4 systems, is seL4_Untyped_Retype.
This turns untyped memory into a derived, concrete type of capability, and is the
main way useful capabilities in any system are set up. It too requires an additional
capability as an argument - namely a CNode capability to be used for storing the
resultant retyped capabilities within.

Besides retyping to produce specific types of new capabilities, capability man-
agement in general is mostly managed through use of methods invoked on the
CNodes that store capabilities, including move, delete, copy, mutate (move with
alteration). Most of these methods are shown in Figure 1.5.

Some capabilities can also be "badged" via the "mint" operation, where a new
capability is created from an existing one, but with some additional word of data
stored inside it as a "badge" value. Badged capabilities cannot be unbadged, re-
badged, or have their badge value replaced or changed, and the badging itself can
only be done by the owner of the original "unbadged" endpoint capability. The

10

seL4_CNode_Copy (seL4_CNode_Move (

Word dest_index, Word dest_index,
Uint8 dest_depth, Uint8 dest_depth,
CNode src_root, CNode src_root,
Word src_index, Word src_index,
Uint8 src_depth, Uint8 src_depth
CapRights_t rights)
) selL4_CNode_Mutate(
seL4_CNode_Delete (Word dest_index,
Word index, Uint8 dest_depth,
Uint8 depth CNode src_root,
) Word src_index,
seL4_CNode_Mint (Uint8 src_depth,
Word dest_index, Word badge
Uint8 dest_depth,)
CNode src_root, seL4_CNode_Revoke (
Word src_index, Word index,
Uint8 src_depth, Uint8 depth
CapRights_t rights,)
Word badge

Figure 1.5: seL.4 CNode methods with abbreviated argument pseudo types.
Adapted from §3.1.2 and §10.3.1 of the seL4 manual [66]

most common situation this is used for is creating badged Endpoint capabilities
- when an IPC message is sent through an endpoint using a badged capability,
the badge value is exposed as an extra argument to the thread receiving it. This
can be used by a ‘server’ thread to give out an endpoint to multiple clients or
client contexts, providing them access to the one server endpoint in a way that
is multiplexed on the server side. The badges can be used as a second layer of
sorts for securely and uniquely identifying these clients or client contexts - for
example, they could be used as a secure means of providing "file handles" for a
file server, without requiring the file server to have explicit identity knowledge of
what threads or components are on the other side of the endpoint the fileserver
provides its API through.

A key distinction between seL4 capabilities is that of whether the invocations
ultimately represent calling the kernel (and just the kernel) to do work, or whether
the invocation represents calling into code elsewhere in userspace to do work.
Endpoints, which power seL4 IPC, represent the latter - seL4 IPC will be covered

more in section 1.5.

11

1.4 sel4 Protection Domains

Core to the security model of seL4 systems are the setup and design of ‘protection
domains’. These are essentially the walls within which code components and
resources can be ‘locked down’ with, and primarily consist of both a ‘CSpace’
(capability space) and ‘VSpace’ (virtual address space). Every thread set up on an
seL4 system has a particular CSpace and VSpace set on it, via properties on the
thread object, and any userspace code on selL4 always executes within the context
of one of these threads.

A CSpace is the set of all capabilities that the executing thread can make use
of, and thus defines the ‘world’ of system access that a thread has. It consists
of a root ‘CNode’ object, which is actually the physical memory storage location
for capability datastructures, but more abstractly, defines the ‘number space’ that
capability addresses are interpreted within, in terms of which capabilities exist at
what capability addresses.

A VSpace is a virtual address space that the system Memory Management
Unit (MMU) is set up by the kernel to interpret and use. This, similarly to the
CSpace for capabilities, ultimately defines the ‘number space’ that memory ad-
dresses are interpreted within, in terms of which physical memory addresses
should be used when accessing a virtual memory address.

Restricted VSpaces on selL4 are typically used as a security mechanism for
device driver code - the driver is ultimately only ever given access to the spe-
cific control register memory addresses that can control the device, plus what-
ever physical memory the driver might need for data storage. This contrasts with
Linux drivers, where the driver code executes within the entire kernel address
space, which poses a large security risk for kernel exploits (see analysis of Linux
kernel CVEs in [10]).

Restricted CSpaces are also core to the security of seL4 systems, as ultimately,
a thread started in a CSpace will only ever be able to control or impact the system
on the basis of the capabilities available to it within that CSpace. It can never
invent or forge new capabilities - new capabilities can only come from retyping
existing ones it was already explicitly given, or from capability transfer through
seL4 IPC from another thread (as will be covered in the next section), or unless it
is somehow explicitly donated a new capability by some other thread that has a
capability to the root of its CSpace, via move/copy. This latter donation approach

would typically only be taken for CSpace initialisation, as owning the root CN-

12

ode capabilities for multiple threads infers a high degree of trust on the domain
holding those capabilities, and any further modifications to the CSpace of a thread
once it has started may involve requiring knowledge of how that thread may or
may not have filled up more of its CSpace through capability retyping or IPC.
Locked down protection domains are however generally not much use with-
out the ability to talk to other protection domains, which is where seL4 IPC comes

into the picture.

13

1.5 seL4 IPC and blocking semantics

seL4 IPC (inter-process communication) draws its design from its heritage of the
L4 microkernel family, with a strong focus on fast performance (in a ‘fastpath’
case specifically), and a direct thread-to-thread communication model. For two
threads in different protection domains to communicate via this IPC, they need
to have capabilities to a shared Endpoint. IPC is in general a blocking operation -
calling Send () or Call() on an endpoint will block the calling thread until such
time that the IPC is handled by the other side of the endpoint. Similarly, calling
Recv () or ReplyRecv () will block the calling thread until such time that a send
is invoked from the other side of the endpoint.

IPC sending is invoked with a number of message register arguments, which
are passed over to the receiving thread as output from the receive operation. In the
general case, the messages are stored in an ‘TPC buffer’ set up as part of the thread
control block, but in the fastpath case, the messages may actually be delivered
within CPU registers kept aside during the switch from the sending thread to the
receiver thread - a hallmark trick of the L4 microkernel.

IPC s in particular well optimised around the case of the Call () and ReplyRecv ()
syscall mechanisms, which combine the send and receive behaviours into a single
call to provide for more optimised control flow, and which must be used for the
fastpath to work. Issuing a Call() on an endpoint will provide the receiver with
a one-time ‘reply cap’ capability, that allows the receiver to hand control back to
the calling thread without needing to know its identity.

seL4 IPC in general is moreso, as per definitions discussed by Gernot Heiser
[31], ‘a user-controlled context switch with benefits’, or ‘the seL4 mechanism for
implementing cross-domain function calls’.

Communication between protection domains can also be achieved by the use
of Notifications, which exist primarily for signalling and synchronisation pur-
poses. Notifications combined with shared memory mapped between two do-
mains is a common pattern for high-throughput communication (as used in the
recently-developed selL4 Device Driver Framework (sDDF) [35, §IV]).

14

1.6 seL4 boot process + root task capability bootstrap

When the sel4 kernel boots, it must carefully bootstrap some initial capabilities
to faithfully represent the state of the system that it has been booted on, and any
alterations to the state of the system that it has made as part of setting itself up.

These alterations include:

« the use of physical memory for storing the kernel’s own code, data, and

stack

« the use of physical memory for storing the code, data, and stack of the root

task the kernel has been configured to use

« the setup of a page table and associated mappings for the address space of

the root task, which is ultimately stored somewhere in physical memory

« a CNode for the root task’s CSpace to house various initial capabilities, in-
cluding ones for all resources set up for it above. which is all, again, stored

somewhere in physical memory

Some of this can be defined statically, but as seL.4 can be booted on systems
with dynamic hardware configuration (e.g. depending on what RAM sticks are
physically installed), some of it must be determined at runtime as well. Part of the
boot process also involves a ‘bootstrap’ where Untyped capabilities are created to
represent all the areas of memory that have not been used by the kernel and its
setup, which are then handed over to the root task - i.e. the capabilities are stored
into the CSpace that the root task’s initial thread is started with.

The root task itself needs to be able to know what initial capabilities it has been
set up with, both statically and dynamically. Figure 1.6 shows an enumeration of
the set of static / well-known capabilities that the kernel will always set up in
the first 16 or so slots of the CSpace of the root task. On the dynamic side, as
the sel4 capability APIs do not typically give any mechanisms for identifying
capabilities or reporting information about their current state, this information
has to be explicitly provided in memory that the root task can read. This is done
via the ‘bootinfo’ struct, which the kernel sets up, then passes by pointer as the
first argument to the entry point of the root task. The format and structure of the

bootinfo structure is shown below in Figure 1.7.

15

/* caps with fized slot positions in the root CNode */

enum {
seL4_CapNull =
seL4_CapInitThreadTCB =
seL4_CapInitThreadCNode =
seL4_CapInitThreadVSpace =
seL4_CapIRQControl =
seL4_CapASIDControl =
selL4_CapInitThreadASIDPool =
seL4_CapIOPortControl =

o~ supported) */
seL4_CapIOSpace = 8,

o support) */
seL4_CapBootInfoFrame = 9,
seL4_CapInitThreadIPCBuffer = 10,
seL4_CapDomain =11,
seL4_CapSMMUSIDControl =12,

- mnot supported*/
seL4_CapSMMUCBControl = 13,

o not supported*/

#ifdef CONFIG_KERNEL_MNCS
seL4_CapInitThreadSC = 14,
seL4_NumInitialCaps = 15

#else
selL4_NumInitialCaps = 14

#endif /* !CONFIG_KERNEL_MCS */

1

~NOoO s WN e O

/* null cap */

/* initial thread's TCB cap */

/* initial thread's root CNode cap */

/* initial thread's VSpace cap */

/* global IR controller cap */

/* global ASID controller cap */

/* initial thread's ASID pool cap */

/* global I0 port control cap (null cap if not

/* global I0 space cap (null cap if no IOMMU
/* bootinfo frame cap */

/% initial thread's IPC buffer frame cap */
/* global domain controller cap */

/*global SMMU SID controller cap, null cap if

/*global SMMU CB controller cap, null cap if

/* initial thread's scheduling context cap */

Figure 1.6: Fixed/‘well-known’ capability addresses for capabilities set up for the
root task as part of the seL4 boot process.
Sourced from libsel4/include/sel4/bootinfo_types.h in the seL4 kernel

codebase

16

typedef seL4_Word selL4_SlotPos;

typedef struct seL4_SlotRegion {
seL4_SlotPos start; /* first CNode slot position OF region */
selL4_SlotPos end; /* first CNode slot position AFTER region */
} sel4_SlotRegion;

typedef struct seL4_UntypedDesc {
seL4_Word paddr; /* physical address of untyped cap */
selL4_Uint8 sizeBits;/* size (2°n) bytes of each untyped */
seL4_Uint8 isDevice;/* whether the untyped is a device */
seL4_Uint8 padding[sizeof (selL4_Word) - 2 * sizeof (selL4_Uint8)];
} sel4_UntypedDesc;

typedef struct selL4_BootInfo {

seL4_Word extralen; /* length of any additional bootinfo
- 4nformation */

seL4_NodeId nodelD; /* ID [0..numNodes-1] of the selj node (0 if
- uniprocessor) */

seL4_Word numNodes ; /* number of selj nodes (1 if uniprocessor)
— */

selL4_Word numIOPTLevels; /* number of IOMMU PT levels (0 +f mo IOMMU
o support) */

seL4_IPCBuffer *ipcBuffer; /* pointer to initial thread's IPC buffer */

seL4_SlotRegion empty; /* empty slots (null caps) */

selL4_SlotRegion sharedFrames; /* shared-frame caps (shared between sel/

o nodes) */
seL4_SlotRegion userImageFrames; /# userland-image frame caps +*/
seL4_SlotRegion userImagePaging; /* userland-image paging structure caps */

seL4_SlotRegion ioSpaceCaps; /* I0Space caps for ARM SMMU */
selL4_SlotRegion extraBIPages; /* caps for any pages used to back the
- additional bootinfo information */
selL4_Word initThreadCNodeSizeBits; /* initial thread's root Clode size
o (2°n slots) */
selL4_Domain initThreadDomain; /* Initial thread's domain ID */

#ifdef CONFIG_KERNEL_MCS
seL4_SlotRegion schedcontrol; /#* Caps to sched_control for each node */
#endif
seL4_SlotRegion untyped; /* untyped-object caps (untyped caps) */
seL4_UntypedDesc untypedList [CONFIG_MAX_NUM_BOOTINFO_UNTYPED_CAPS]; /*
o 4nformation about each untyped */
/* the untypedlist should be the last entry in this struct, in order
* to make this struct easier to represent in other languages */
} sel4_BootInfo;

Figure 1.7: C types showing the layout of data within the seL4 ‘bootinfo’ struct
passed to the root task of the system.

Sourced from libsel4/include/sel4/bootinfo_types.h in the seL4 kernel
codebase

17

1.7 ‘Memory Server’ example

One of the first and most important problems involved in the design of systems
on top of sel4 is that of memory allocation. When the selL4 kernel boots up, as
described in section 1.6, it hands the root task a set of Untyped capabilities that
represent all remaining memory available for use after boot. From here, all subse-
quent capabilities in the system will have to descend from these initial capabilities,
as subsequent threads, CSpaces, and VSpaces must all be constructed by splitting
down and retyping these Untyped capabilities. This is a core part of seL4’s secu-
rity model, as it both ensures that all physical memory is accounted for, but also
that there is a strong chain of authority behind how that physical memory gets
distributed around all the components of the system?.

Memory allocation in seL4 systems is often managed by some kind of memory
server, which the root task itself may be set up to act as, or that the root task can
set up with all or most of the untypeds the root task was handed from the kernel
boot. This memory server can then provide an Endpoint-based API for other tasks
/ processes / components to request additional memory with, and any components
/ tasks that might need more memory can be set up with an endpoint to talk to
the memory server with. In typical microkernel fashion, any policy for which
components should be allowed more memory is not part of the microkernel itself
- it must be implemented somehow as part of code in userspace.

The recently-developed ‘KataOS’ by Google Research [58] provides an exam-
ple of this, with its MemoryManger CAmKES component®, the interface of which

is shown in Figure 1.8 and Figure 1.9.

2A great example of this can be found in Figure 16 of [39, pg 2:46], which displays a full deriva-
tion graph of the capDL capabilities from an example seL4 system

Note that whilst CAmKES itself does not usually provide for capability transfer through the
seL4 endpoints set up for component communication, the KataOS developers have done this man-
ually as part of their MemoryManager server and clients.

18

// Kata 0S MemoryManager service.

import <LoggerInterface.camkes>;
import <MemoryInterface.camkes>;

component MemoryManager {
provides MemoryInterface memory;

maybe uses LoggerInterface logger;

// Enable KataOS CAmkES support.
attribute int kataos = true;

// Mark the component that should receive the unallocated UntypedMemory
// passed to the rootserver from the kernel. In addition to the

// capabilities the component also gets a page with Bootinfo data that
// includes updated UntypedMemory descriptors. In order to pass the

// capabilitiies the component's cnode is up-sized to be large enough
// to hold the extra capabilties.

attribute int untyped_memory = true;

procedure MemoryInterface {
include <MemoryManagerBindings.h>;

MemoryManagerError alloc(in char request[]);
MemoryManagerError free(in char request[]);
MemoryManagerError stats(out RawMemoryStatsData data);

void capscan();
void debug();
};

Figure 1.8: MemoryInterface CAmkES component and interface from Google
KataOS. The format of char request[] is detailled in Figure 1.9

Sourced from the KataOS repository https://github.com/AmbiML/
sparrow-kata-full/tree/main/apps/system/components/
MemoryManager

19

https://github.com/AmbiML/sparrow-kata-full/tree/main/apps/system/components/MemoryManager
https://github.com/AmbiML/sparrow-kata-full/tree/main/apps/system/components/MemoryManager
https://github.com/AmbiML/sparrow-kata-full/tree/main/apps/system/components/MemoryManager

// Objects are potentially batched with caps to allocated objects returned
// in the container slots specified by the [bundle] objects.
pub trait MemoryManagerInterface {
fn alloc(&mut self, bundle: &ObjDescBundle) -> Result<(), MemoryError>;
fn free(&mut self, bundle: &0ObjDescBundle) -> Result<(), MemoryError>;
fn stats(&self) -> Result<MemoryManagerStats, MemoryError>;
fn debug(&self) -> Result<(), MemoryError>;

pub struct ObjDesc {
// Requested object type or type of object being released.
pub type_: seL4_0bjectType,

// Count of consecutive objects with the same type or, for CNode

// objects the log2 number of slots to use in sizing the object,

// or for untyped objects the log2 size in bytes, or for scheduler

// contezt objects the size in bits. See sel/_ObjectType::size_bits().
count: usize, // XXX oversized (ezcept for untyped use)

// CSpace address for realized objects requested. If [count/ is >1
// this descriptor describes objects with [cptr/'s [0..[count]/).
// Since each block of objects has it's own [cptr/ one can describe
// a collection with random layout in CSpace (useful for construction).
/7
// Object capabilities returned by the MemoryManager have the mazimal
// rights. We depend on trusted agents (e.g. ProcessManager) to reduce
// rights when assigning them to an application. This also applies to
// the vm attributes of page frames (e.g. mark not ewecutable as
// appropriate).
pub cptr: selL4_CPtr,
}
// ObjDescBundle holds a collection of ObjDesc's and their associated
// container (i.e. CNode). This enables full "path addressing” of the
// objects. Helper methods do move/copy operations between a component's
// top-level CNode and dynamically allocated CNodes.
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct ObjDescBundle {
pub cnode: selL4_CPtr,
pub depth: u8,
pub objs: Vec<ObjDesc>,

Figure 1.9: Assorted snippets of the MemoryManager component from KataOS,
showing its actual Rust-typing interface.

Sourced from the KataOS repository https://github.com/AmbiML/
sparrow-kata-full/tree/main/apps/system/components/
MemoryManager

20

https://github.com/AmbiML/sparrow-kata-full/tree/main/apps/system/components/MemoryManager
https://github.com/AmbiML/sparrow-kata-full/tree/main/apps/system/components/MemoryManager
https://github.com/AmbiML/sparrow-kata-full/tree/main/apps/system/components/MemoryManager

Chapter 2

Object-Capability Language
background

The Object-Capability family of languages stems back primarily to the develop-
ment of E, a programming language devised by Mark Miller as part of his PhD
thesis at John Hopkins University [45], which also formally proposed the Object-
Capability model. This section provides some brief background to the language
family and some common patterns associated with them that will be referenced
later.

Taking inspiration from the same capability model from operating systems
research, in the Object-Capability programming model, object references in the
language are viewed as the ‘capabilities’ for accessing and controlling code (ob-
jects) or other resources. The model dictates that an object A can only control or
interact with another object B if it has a ‘reference’ or ‘capability’ for the other
object. For this to be secure, object references must be unforgeable, which is the
case in memory-safe languages such as Java and JavaScript.

These references similarly must be given to objects explicitly for them to re-
ceive them in the first place, which allows for strong security reasoning over the
control of use of code in the language. For example, untrusted third party code C
can be run by a parent program P in a more trusted way, where C is only provided

access to explicit subsets of the objects and code that P controls.

21

2.1 Confined Execution

A hallmark of many object-capability systems, especially Secure EcmaScript and
its deriveratives (which will be covered more in section 4.2), is that of confined
execution.

Normally in many programming language environments, the space of avail-
able primitives is essentially global - modules can be imported on-demand as they
are needed. This makes programming easier and more useful, but it comes with
big security risks if dynamic control is gained over the language execution envi-
ronment by an attacker, or if untrusted code is allowed to execute.

In object-capability models, having mutable global objects immediately breaks
the security model, as units of code could write references to these global objects
to allow other units of code to obtain them without having been explicitly passed
them. This leads to a tendency for everything being explicit. Even basic features
such as clock access are put behind APIs that require access to specific root capa-
bilities, such that code in any particular object-capability environment will only

be able to use these features if they were explicitly passed access to them.

22

2.2 Vats and remote objects

Another object-capability language feature is that of ‘vats’, which are object spaces
with a thread of execution control. The original distributed programming envi-
ronment provided by E included a definition of vats [45, §14.1], which are ‘hosted’
on various different computers to facilitate distributed computing. Objects from
a remote vat can be introduced into the local execution environment by means of
a cryptographic object capability URL'. This is an example of a sparse capability
model (as briefly mentioned in the different capability implementation models in
section 1.1), where capabilities are treated as ‘effectively unforgeable’ by nature
of being impracticably large random numbers.

The Secure EcmaScript ecosystem also includes a proof-of-concept Vat system

called ‘SwingSet’2.

!See http://erights.org/elang/concurrency/introducer.html for an example
’See https://github.com/Agoric/agoric-sdk/tree/master/packages/SwingSet

23

http://erights.org/elang/concurrency/introducer.html
https://github.com/Agoric/agoric-sdk/tree/master/packages/SwingSet

Chapter 3

Project Motivation and current

selL4 tooling review

As described in chapter 1, seL4 programming is mostly done in C, where seL4 ca-
pabilities must be managed manually through use of capability addresses and the
libsel4 kernel programming C API Similar to the issues involved with working
with pointers in C, working with capabilities in this environment is fiddly and it
is difficult to use them and the associated APIs expressively when managing ca-
pabilities dynamically. Capability addresses are essentially ‘magic numbers’ that
on their own give no indication of the type of capability they refer to, unless this
is expressed through constant or variable naming, or an associated ‘type’ field.
The type used by the all the 1ibsel4 API functions for capabilities is seL4_CPtr,
which is just a C typedef of seL4_Word, an unsigned, word-sized integer type
for the processor/platform the kernel is being built for.

CAMKES [26] and its associated tool CapDL [40, 12] have been developed to
provide a more supportive component model for working with seL4 capabilities.

A sample capDL specification is shown in figure 3.1. Use of capDL at least
provides for a more typed and specific way to refer to selL4 capabilities - however,
only in a static manner, as capabilities are allocated / distributed up front at project
build time. To use these capabilities at runtime, they are still ultimately accessed
via magic seL4_CPtr numbers exported back out into C code.

CAMKES also only facilitates working with capabilities statically - capabilities
are allocated for all the components up front at build time, and CAMKES’s mech-
anisms do not provide for any runtime transfer of capabilities - doing so requires
falling back onto the aforementioned 1ibsel4 C APIs.

24

arch ia32
objects {

my_tcb = tcb

my_cnode = cnode (3 bits)

my_frame = frame (4k, paddr: 0x12345000) // paddr is optional
my_page_table = pt

my_page_directory = pd

}
caps {

// Specify cap addresses (ie. CPtrs) in cnodes.
my_cnode {

: my_tcb

my_frame

my_page_table

my_page_directory

B W N

}

// Specify address space layout.
// With 4gb page directories, 4mb page tables, and 4kb frames,
// the frame at paddr 0x12345000 will be mapped at vaddr OxABCDE0OO.
my_pd {
0x2AF: my_pt
}
my_pt {
OxDE: my_frame
}

// Specify root cnode and root paging structure of thread.
my_tcb {

vspace: my_pd

cspace: my_cnode

}

Figure 3.1: Sample capDL spec
Sourced from the capDL documentation at https://docs.sel4d.systems/
projects/capdl/

25

https://docs.sel4.systems/projects/capdl/
https://docs.sel4.systems/projects/capdl/

When it comes to the challenge of building more dynamic systems on seL4,
where the set of components on the system is not necessarily fixed or known
at project-build time, there are not really any options or solutions for anything
that maps more natively to the seL4 environment. Whilst CAmKES provides a
good model for defining and connecting components, it does not really include
any tools or solutions for spinning them up dynamically, as the components when
built as part of a CAmKES ‘assembly’ have a strong tie back to the capabilities that
are (statically) allocated for them via capDL. In any CAmKES project, the root task
of the seL4 system is always the capDL loader!, which is a C program that gets
built with the inclusion of a generated capdl_spec . c file? that contains one large
C struct defining all the capabilities that were described as part of the capDL spec
generated from the assembly of CAmKES components. The capDL loader uses
this as the basis for a one-time setup of real seL4 capabilities at runtime when it
starts up, before starting all the threads of the components and then suspending
itself.

For dynamic systems, projects will end up falling back onto plain POSIX lay-
ers, which re-introduce the issue of ambient authority as described in section 1.1.
There is an existing alternate solution in the form of Genode [30, 28], which is
a toolkit for building capability-focused operating systems. However, it has its
own notion of capabilities that don’t necessarily match selL4’s, as it is designed to
support building systems with many different kernels (including Linux).

Object-Capability languages pose an interesting and potential solution to this
issue of constructing dynamic systems, as they are capable of giving degrees of
assurance around what code can or cannot access in a more dynamic manner. This
thus posed as the motivation for the project: to see if an object-capability language
could be adapted onto seL4 in a way that would make working with the operating
system’s capabilities easier, more ‘natural’, or more useful, and in a way that more
naturally matches the ‘separated components’ model that generally underlies the

design and development of systems built atop seL4.

!See the BuildCapDLApplication and DeclareRootserver callsinhttps://github. com/
seL4/camkes-tool/blob/camkes-3.10.0/camkes/templates/camkes-gen. cmake#L596

%See the definition of the BuildCapDLApplication CMake helper function in https://
github.com/selL4/capdl/blob/0.2.1/capdl-loader-app/helpers.cmake#L9

26

https://github.com/seL4/camkes-tool/blob/camkes-3.10.0/camkes/templates/camkes-gen.cmake#L596
https://github.com/seL4/camkes-tool/blob/camkes-3.10.0/camkes/templates/camkes-gen.cmake#L596
https://github.com/seL4/capdl/blob/0.2.1/capdl-loader-app/helpers.cmake#L9
https://github.com/seL4/capdl/blob/0.2.1/capdl-loader-app/helpers.cmake#L9

Chapter 4

Survey of Object-Capability
Languages and appropriateness

for mapping

Many different object-capability (or ‘ocap’!) languages exist, mostly from the re-
sults of various research papers and projects. The first stage of research work for
this thesis / project was to explore what languages existed and to evaluate which
might be the best pick for adapting to the seL4 microkernel environment. This
section will cover the ocap languages that were considered as a form of literature

review for the project.

'The term ‘ocap’ is used throughout this thesis to refer to object-capabilities in short.

27

41 E

One of the seminal authors on the topic of object-capability languages is Mark
Miller, who wrote his PhD thesis on the topic in 2006 [45]. The thesis introduced
the language E, which has become a seminal ocap language that has inspired the
design of many other future languages.

E consists both of a language, and a distributed object programming envi-
ronment, where ‘vats’ of objects can communicate between each other with se-
cure message-passing. The CapTP and VatTP protocols provide means for ob-
jects to securely share references to other vats, with a ‘swiss number’ system
for object identity that is essentially a sparse capability model, and the language
contains various levels of object references, including ‘NearRefs’, ‘FarRefs’, and
‘SturdyRefs’, to represent different types of object references (and to thus ensure
that the appropriate local or remote code is invoked depending on the type of
reference).

E was initially developed as an extension to Java, and its primary available
form is still called ‘E-on-Java‘ [44], downloadable as a tarball with some bash
scripts and a . jar file containing most of the language and runtime. The latest
version, 0.9.3, is dated late 20162, but the version before appears to be from 20093,
highlighting that E itself is quite an old language that does not seem to have been
worked on or updated in a while.

E’s basis of Java introduces ones of the key problems for porting a language
onto sel4 - support for dependencies that the language in question is built on top
of. Running JVM bytecode on selL.4 would require a JVM runtime for the sel4 en-
vironment, which does not appear to currently exist, and porting one could be a
very non-trivial exercise, as seL4 is in many ways quite a non-standard environ-
ment (e.g. the kernel itself is not a POSIX-compliant environment). JVM-based
languages also typically rely on at-runtime JIT (just-in-time) compilation for per-
formance, which could also be quite non-trivial to implement on top of seL.4, and a
lot of dynamic memory allocation and reliance on garbage collection. This could
also be complicated to implement on seL4’s capability-based memory manage-
ment structure (and which would be implemented in a non-capability-based lan-
guage, which somewhat defeats the purpose of the project).

Another version of E is also available, ‘E-on-CL‘ (Common Lisp) [38], but

’See http://erights.org/download/0-9-3/
3See http://wiki.erights.org/mediawiki/index.php?title=ReleaseNotes092&
action=history

28

http://erights.org/download/0-9-3/
http://wiki.erights.org/mediawiki/index.php?title=ReleaseNotes092&action=history
http://wiki.erights.org/mediawiki/index.php?title=ReleaseNotes092&action=history

suffers the same language dependency problem but for Common Lisp (and in fact
still requires Java as well for the language parsing). For these reasons E was not

investigated for mapping any further.

29

4.2 Jessie / Secure EcmaScript

A more recent work of Mark Miller’s is the Jessie [3] language, which is built on
top of the Secure EcmaScript system/runtime and designed to be "a small, safe
ocap subset of Javascript”. Secure EcmaScript itself was developed by Miller as
part of a train of work including Caja [46] and "Dr. SES" (Distributed Resilient
Secure EcmaScript) [47], and is now also referred to as ‘Hardened Javascript’ as a
component of the ‘Endo’ Javascript platform [1].

Caja was a circa-2008 Google project (deprecated as of Jan 21 2021) aiming at
providing a safe environment for running untrusted scripts within the context of
a web page in web browser. In Caja, JavaScript scripts are translated into a ‘safe’
form, and passed objects as object capabilities from the executing page context
to allow careful, contained execution of these untrusted scripts. The passed-in
object capability objects meant that the scripts could still invoke code already on
the page, albeit in a very explicitly controlled manner. Jessie is a later (circa-2019)
development of the SES ecosystem that constitutes more of a dedicated language
than just a Javascript runtime.

Jessie is appealing for many object-capability reasons, and was initially the
frontrunner language choice for this project, but is quite complex in terms of
implementation details. The language itself is defined as a parsing-expression
grammar, and in the current implementation [2], the grammar is written in a
‘quasi parsing-expression generator’ that is itself written in Javascript, and which
relies on string template tags, a more modern Javascript language feature.

Jessie and SES also rely on many not-yet-standardised extensions to Javascript
such as Compartments [59] and Frozen Realms. This all combines to make a
rather complicated dependency research project (in addition to the previously
mentioned OS-level dependency problems), as any choice of Javascript runtime
needs to consider whether the language features in question are supported or
not, and if not, if they can be polyfilled with extra Javascript code (as is common
practice in the web development community for supporting Javascript language
features in older web browsers that don’t support more modern features).

V8 is probably the most common/popular Javascript runtime, written primar-
ily as the Javascript runtime for the Chromium browser project, and also used
by Node]S. As of recent years it has strong, mature support for many modern
Javascript language features. However it is primarily written in C++, and relies

strongly on JIT compilation for performance. No C++ development toolchain ap-

30

pears to currently exist for seL4, and JIT compilation (requiring the ability to write
code into data sections of memory) would likely have been more complicated to
implement, so it was not considered further for these reasons.

There are various other smaller Javascript runtimes that could have been in-
vestigated further, such as Quick]S #, Duktape®, and m]JS ¢. However the general
problems of poor performance (amplified by much of the Jessie language inter-
nals themselves being written in Javascript) made these still unideal choices for
something to use for development within the seL.4 microkernel environment.

Javascript is in general not a particularly performant programming language
by its very nature, mainly due to the generality that some of its language features
provide. In most modern contexts (such as web browsers), there is a strong re-
liance on JIT compilation, guided by profiling of the code at runtime, to achieve
acceptable levels of performance. For example, objects in the language can have
dynamically-assigned properties, which are often string-keyed and thus may re-
quire the allocation and use of a hashmap datastructure, even in cases where many
objects that have the same structure are allocated. For performance improvement,
many Javascript engines will perform ‘inline caching’ of the structure of objects
based off their ‘shape’ - i.e. what properties they get defined with [51]. Even
changing the order in which properties are defined can cause a large difference in

performance (7x slowdown in the example shown in [51]).

*https://bellard.org/quickjs/
*https://duktape.org/
*https://github.com/cesanta/mjs

31

https://bellard.org/quickjs/
https://duktape.org/
https://github.com/cesanta/mjs

4.3 SHILL

SHILL [48] is a capability-based shell scripting language for FreeBSD, built to
facilitate the execution of shell scripts in contained sandboxes that limit their
resource access to only resources explicitly provided. SHILL scripts by definition
come with contracts, which ‘specify what capabilities a script requires and how
it intends to use them’ [48]. A similar project called Plash (Principle of Least
Authority SHell) [53] exists for Linux, which uses a modified version of GNU libc
to virtualise access to the filesystem.

SHILL is implemented as an extension to the Racket language [29] (a dialect
of Lisp that descends from Scheme), using the language macro system. This poses
another complicated language stack dependency that could prove quite difficult to
port and debug. Additionally, the target domain of SHILL, a shell scripting envi-
ronment, is somewhat smaller compared to that of a broader general-purpose pro-
gramming language. For these reasons it was a lower priority option to consider,
but one that nonetheless highlights another useful context that object-capabilities

have been applied within.

32

4.4 Dala

The most recent ocap language found in the survey was Dala [27], published in
2021. Dala is similar to Pony (covered next in section 4.5) in that it is a language
built to provide ‘data-race freedom’ - the ability to write parallel/concurrent code
that comes with an assurance that no data races will occur. Dala introduces the
idea of a ‘safe’ heap, distinct from a pre-existing ‘unsafe’ heap, where gradually-
increasing guarantees can be made about about objects upon the heap relating to
what thread or threads can access them and in what manner.

The current available implementation of Dala is called Daddala 7, which is
written in Grace, another programming langauge, and realised atop a Grace inter-
preter called Moth (or, the Moth VM). Moth in turn is built on top of ‘SOMns’[41]
- an implementation of the Newspeak language [13], which is ‘a dynamic, class-
based, object-oriented language in the tradition of Smalltalk and Self’ [41]. SOMns
is based on TruffleSOM, an implementation of SOM (Simple Object Machine, that
SOMns derives from) [56], realised using the Truffle framework, a Java frame-
work that is part of the GraalVM compiler (which is also written in Java). This
presents perhaps the most dizzying stack of language dependencies so far, which
made it a very difficult option to proceed any further with due to the lack of a Java
environment for seL4 as mentioned in section 4.1. The authors also note in a pre-
sentation on the language [64] that the present implementation currently includes
many levels of dynamic checks, which could be removed in future work with a
gradual type system, but currently could also pose a performance problem that is

not ideal for the reasons mentioned in covering the previous ocap languages.

"https://github.com/gracelang/moth-S0Mns/tree/daddala

33

https://github.com/gracelang/moth-SOMns/tree/daddala

4.5 Pony

Pony [19, 17] is a language that was developed as part of research at Univer-
sity College London, including Sylvan Clebsch’s PhD thesis [17], which describes
much of the language design and implementation in detail. It combines an actor-
model of execution with an advanced type system, with the goal of providing
a guarantee that data-races will be made impossible by nature of the type sys-
tem checking correctly. The type system introduced a novel concept of ‘refer-
ence capabilities’ - a capability model for references to objects and variables in
the language, with various ‘deny’ properties built into their type system rules for
ensuring isolation of read and write access to data in memory.

Alongside the reference capability system, Pony’s object and type system also
provide object-capability guarantees, making it classed as an ocap language as
well [61] - albeit one rooted within the actor model the language is built around.

One of Pony’s core language goals was to achieve C-like performance, which
makes it an attractive choice for developing on top of the sel.4 environment. Un-
like all the other languages explored above, Pony programs compile directly to
machine code via LLVM, and the only other ‘dependency’ for the language is ul-
timately just a C library (1ibponyrt), which seemed much more feasible to port
to the seL4 environment given that most seL4 projects are written in C.

Pony still comes with the dynamic memory allocation and garbage collection
problems of the other languages, but at least has a garbage collection system that
is designed in a more modern, novel way for performance in a multithreaded envi-
ronment (mainly without requiring a ‘stop-the-world GC step’). For these reasons
it became the frontrunner choice for investigating an implementation of.

More relevant details of Pony will be covered in chapter 5.

34

4.6 Other related art

As part of the search for an appropriate object-capability language, various other
related developments were discovered that could be worth further investigation

in future work.

4.6.1 Rust - cap-std and ferros crates

Rust [42] is a popular systems programming language that has emerged in recent
years, as a project from Mozilla, which was put to use there to try and reduce
concurrency bugs within the engine of the Firefox browser as part of another
project called ‘Servo’ [4]. Rust’s borrow checking is in fact very similar to Pony’s
reference capability exclusion guarantees, with Pony even comparing it explicitly
in discussion of its reference capabilities [19, §6 and table 4].

There is an assorted degree of 3rd-party Rust support for seL4 userspace devel-
opment, including the Robogalia project [23], and the Ferros [7] and selfe-sys
[6] Rust libraries from Auxon Corporation. More recently, Google has also pro-
duced a research project for a secure operating system built on top of seL4, called
KataOS [58], which is implemented almost entirely in Rust. (This announcement
unfortunately came out in the last few months of this thesis / research project,
and as such was not able to be investigated in-depth.)

On the object-capability front though, it is not clear if any full / complete
object-capability environment has been created within or on top of Rust yet. A
project from Bytecode Alliance called cap-std [14] has been produced, which is
a ‘capability-based version of the Rust standard library’, however its main usage
appears to have been as the basis for the WebAssembly System Interface imple-
mentation of the Wasmtime WebAssembly runtime (which will be covered in the
next section).

Rust is definitely an option worthy of further research, but given that other
ocap languages had confirmed / stable ocap environments, it did not end up being

investigated further as part of this thesis.

35

4.6.2 WebAssembly + WebAssembly System Interface (WASI)

A perhaps unexpected development to include capability concepts turned out to
be the upcoming WebAssembly standard and execution system, with the We-
bAssembly System Interface proposal in particular being based strongly around a
capability-based security model.

WebAssembly [33] is a developing standard for a stack-based virtual machine
and corresponding binary instruction format, primarily designed for providing
an environment within web browsing contexts for high-performance code execu-
tion, and a target that compiled languages can compile to to execute within those
contexts, which can provide a means for C/C++ applications to be re-compiled to
run in a web browser context. There are many examples of this in action powered
by Emscriptem, an LLVM-to-WebAssembly compiler, including a port [5] of the
(C-based) Quake III engine (ioquake3) to the browser via WebAssembly and We-
bGL, and support for targeting the C++-based Qt Ul and software development
framework into browser WebAssembly environments [63].

One of WebAssembly’s primary design goals is to provide a safe execution
environment, and the execution environment is thus carefully sandboxed by de-
sign from the environment it runs on, to prevent the broader system that the web
browser (or other execution environment) is running on from being exploited.
Aspects of memory safety are a key consideration in the design, as explained in
this section from the original published paper presenting its motivation and initial

design:

Security Linear memory is disjoint from code space, the execution
stack, and the engine’s data structures; therefore compiled programs
cannot corrupt their execution environment, jump to arbitrary loca-
tions, or perform other undefined behavior. At worst, a buggy or
exploited WebAssembly program can make a mess of the data in its
own memory. This means that even untrusted modules can be safely

executed in the same address space as other code. [33]

Due to compiled WebAssembly code not being stored in the linear memory
that can be addressed from the code, a key addition to the specification was that
of function tables, which provide a protected indexing environment for function
lookup, to provide compatibility with the commonly used C paradigm of pass-
ing functions by pointer whilst preventing malicious code from corrupting the

code areas of memory. The 1.0 WebAssembly spec [70] only specifies tables for

36

storing function references, but notes that for table elements, ‘In future versions
of WebAssembly, additional element types may be introduced’ - and the 2.0 spec
draft (as of 2022-04-19) [69] includes an externref type alongside the function
ref type, for ‘references to objects owned by the embedder and that can be passed
into WebAssembly’ [69].

The 2.0 spec draft also now describes tables more broadly as: ‘a vector of
opaque values of a particular reference type’ [69, §2.5.4]. This very similar to that
of a CSpace/CNode in capability-based operating systems (as descibed for seL4
in section 1.4), where objects (capabilities) are stored in protected-indexed tables
(CSpaces/CNodes) separate to that of normal, addressable memory.

The WebAssembly sandboxing also means that much OS functionality is com-
pletely unavailable to code in the WebAssembly runtime environment - at least
solely in the core specification, and not in the way compiled code usually makes
use of OS functionality (i.e. system calls). The WebAssembly System Interface
(WASI) [74, 73] is a proposal from a subgroup under the W3C WebAssembly
Community Group for providing a mechanism for exposing API interfaces to
these kinds of features, and aims to be developed from the ground up to provide
capability-focused APIs. In fact the first ‘high-level goal’ of WASI [73, §WASI High
Level Goals] mentions defining APIs that ‘preserve the essential sandboxed nature
of WebAssembly through a Capability-based API design’, and ‘capability-based
security’ is the first of its listed ‘design principles’ [73, §WASI Design Principles].
This section goes on to mention how WebAssembly’s current reference types can
be used as a basis for implementing such capability-based security design.

As of October 2022, WASI consists solely of a set of early-stage proposals,
with the furthest-progressed proposals at stage 2 only having ‘proposed spec texts
available’ [72]. There is an implementation of some WASI interfaces and functions
[15] in the Wasmtime WebAssembly runtime (via the wasmtime-wasi Rust crate,
which uses the cap-std crate mentioned in subsection 4.6.1), developed by the
ByteCode Alliance. Another WebAssembly runtime, WasmEdge, has been ported
to run on seL4 [55, 54], but has its own separate set of WASI proposal support [71]
which as of October 2022 only includes proposals for (Linux) sockets, cryptogra-
phy functions, neural network access (inference), and network proxy control, all
targeting the Linux platform.

As the citations in this section show, much of WebAssembly is in draft sta-
tus and still under proposal (with WASI even more so than WebAssembly), so

there has not really been as much to work with as of right now. Additionally,

37

WebAssembly is not quite a programming language in the same sense as C / C++
/ Java / JavaScript, given that it is a ultimately a bytecode format much closer
to machine assembly. However it is worth highlighting as a potential future av-
enue for revisiting, given how many parallels there are with the capability-based

resource protection and usage model.

4.6.3 Microsoft Singularity Project

The Microsoft ‘Singularity’ project [37, 36] contains many similar parallels to this
research. The Sing# language [25] developed for it has many similarities to Pony
- it was focused primarily on message-passing communication through strongly-
typed/contract-based ‘channels’, including a first-class switch receive state-
ment for blocking on message receiving, and had a model for eliminating data
races via tracking pointer ownership at compile time [see 25, §3]. Buffers and
other memory data structures in Sing#/Singularity were also capable of being
transferred through messages thanks to an ‘exchange heap’ provided by the op-
erating system.

Singularity was a large integrated language-based system project, with Mi-
crosoft’s Common Intermediate Language (CIL, also previously known as MSIL)
as a common bytecode compile target that was then compiled to machine code
by a compiler and runtime system called Bartok. A binary version of Bartok
(for Windows) was released as part of the Singularity Research Development Kit,
which was a very Windows-centric project (e.g. MSBuild as the build system),
and released under the Microsoft Research License Agreement. This made adopt-
ing anything practically difficult, and the standard issues of adapting a complex
bytecode-based runtime to selL.4 would likely have applied as well.

38

Chapter 5
Pony Background

After the review of ocap languages in chapter 4, Pony was ultimately settled on as
the language of choice to focus on trying to adopt to the seL4 environment, mainly
due to it being the language with seemingly the lowest amount of dependencies
to port into the minimal C environment usually provided when developing on top
of sel4.

Whilst the language has already been briefly outlined in section 4.5, some
further background detail of Pony relevant for later sections of this thesis are
covered in this section.

Sylvan Clebsch’s 2017 PhD thesis on Pony [17] will be referenced much as
part of this, and has thus been aliased as ‘ClebschThesis’ wherever it is cited, for

clearer reference.

39

5.1 The Pony language + execution model

As outlined in section 4.5, Pony is an actor-model programming language. Actor
types are defined with ‘behaviours’, which are asynchronous message-handling
methods, and calling them is termed ‘invoking’ a behaviour of an actor, which
actually just consists of sending a message to it for it to pick up and execute the
behaviour with later. Actor behaviours thus become units of sequential execu-
tion, where the programmer can know that whenever any one message is being
handled for a particular actor instance, no other behaviour on that actor could be
being handled at the same time, either concurrently or in parallel.

Actor models are usually designed to achieve highly performant parallelism
without requiring the programmer to manually wrangle threads and locks. In
Pony, parallelism is achieved under the assumption that there will be many actors
allocated during the course of the program execution, each with their own queue
of incoming messages that get sent into to invoke the defined behaviours on the
actor, and that any one actor can be picked up and run by a ‘runtime thread’ when
it has messages in its queue.

An example of the runtime model is shown in Figure 5.1. Actor A on the left
has many messages in its queue, and is currently being handled by runtime thread
1, which has popped a message off the queue to find it being one representing an
invocation of the behvFoo behaviour for that actor type. The runtime thread
thus calls in to the compiled code for that behaviour, executing it with argument
values from the incoming message. The execution of this behaviour includes a
line that invokes the behvBar behaviour of Actor B. The runtime code for this
simply pushes a message representing the invocation of behvBar onto Actor B’s
message queue, which is a lock-free operation.

As part of its development, Pony also introduced two novel schemes of garbage
collection and dead-actor collection: ORCA - ‘Ownership and Reference Counting-
based Garbage Collection in the Actor World” [20]- and Message-based Actor
Collection (MAC) [18]. These schemes both make use of the same message-
passing mechanism used for invoking actor behaviours to interleave reference-
counting and state-related information into the same model used for the dis-
tributed communication, to allow for garbage and dead actor collection to occur

without having to pause the entire execution of the program.

40

ActorA

running

lock-free
thread-safe
queue push)E

ActorB

i
i Actor Actor Actor Actor Actor
i

Actor Actor Actor Actor Actor

ALAAR

Actor Actor Actor Actor Actor

7

¢ \
*..work stealing *
P \

Scheduler
Thread 2

Figure 5.1: Overview of Pony actor messaging at runtime

4

1

5.2 Compilation model and 1ibponyrt runtime

As initially mentioned in section 4.5, Pony programs are compiled via LLVM, re-
sulting in a final static binary of machine code that can be optimised ahead-of-time
as part of the compilation, rather than most of the other ocap language options
that involve a runtime interpreter or JIT (just-in-time) compiler. An overview of

the compilation process is shown in Figure 5.2.

4 N N
Compiler (ponyc) Runtime (libponyrt) Executable
[Parser + Lexer (C)] [libponyrt API] compiled program code
§ ,A_‘ JTTTTT Ty
Pony source fils Type Checker (C) —] : calls into libponyrt
(O] v .
[Code Generator (C, LLVM)] [syscalls] linked libponyrt
o AN J

Figure 5.2: Overview of the Pony compiler, runtime, and output programs

Final output Pony programs ultimately consist both of some binary code that
LLVM has produced as dictated by what Pony code the user wrote in the input
source file, as well as a ‘1ibponyrt’ library, which is written in C and distributed
alongside the compiler. The program code part that is generated by the compiler
will include many calls to 1ibponyrt functions, which are ultimately connected
to a compiled copy of 1ibponyrt as part of a final linking process. The compiler
and runtime are distributed as part of the ponyc project, which is available on
GitHub [62].

Pony source files are first processed by a lexer and parser implemented in C,
into an AST form in memory, which is then type-checked (again in the same C
code), before finally being processed by a series of calls to LLVM via its C API
to generate the program’s code. This includes both a ‘types’ section where code
and metadata for all the actors and classes is compiled and stored, as well as a
main() function which bootstraps the runtime (see section 8.1 further ahead for
more details about this).

At this stage, the generated program code can be inspected in the form of
LLVM IR (intermediate representation), which the compiler can optionally out-
put to a file. However in normal operation, the code is outputted as a compiled
machine-code object file (via a call to LLVMTargetMachineEmitToFile), before
being linked against a pre-compiled copy of 1ibponyrt and threading libraries

to produce a final executable binary file. (An optional --runtimebc compiler

42

flag can also be used to inline all the runtime calls from a pre-compiled LLVM IR
bytecode file, which will allow for more aggressive optimisation by LLVM before
producing the program’s object file).

This compilation process was ultimately quite a natural environment to work
with as part developing something for selL4, as C code and binary-level assem-
bly are the common working environments when developing on top seL4 and its

primitives.

43

5.3 Runtime components and API

The public functions provided by the libponyrt runtime are summarised below

in Figure 5.3.

// runtime control
pony_init ()

pony_start ()

pony_stop()

// get global context
pony_ctx()

// threads
pony_register_thread()
pony_unregister_thread()

// allocate actor
pony_create(ctx, type)

// switch current actor
pony_become(ctx, actor)

// message-passing
pony_alloc_msg(size_index, id)
pony_send(ctx, to_actor, msg)

// scheduling
pony_schedule(ctx, actor)
pony_unschedule(ctx, actor)

// tracing for garbage collection
pony_trace(ctx, addr)
pony_traceknown(ctx, addr, type,

- mutability)
pony_traceunknown(ctx, addr, mutability)
// message-based garbage collection
pony_gc_send (ctx)
pony_send_done (ctx)
pony_gc_recv(ctx)
pony_recv_done (ctx)
pony_gc_acquire (ctx)
pony_acquire_done(ctx)

pony_gc_release(ctx)
pony_release_done(ctx)

// allocate on current actor's heap
pony_alloc(ctx, size)

Figure 5.3: 1ibponyrt runtime functions

An overview of all the components of the runtime is also shown in Figure 5.4,
adapted from the Runtime Implementation appendix of Clebsch’s thesis on Pony
[ClebschThesis, Appendix A].

Actor GC Sharing GC | Tracing GC

Actors

Figure 5.4: Components of the Pony runtime
Adapted from Figure A.1 of ClebschThesis

The lowest building blocks of the runtime can be broken down into three cat-
egories - memory allocation components, lock-free queues for communication

and work-stealing, and thread management for scheduling. (There is also an ad-

44

ditional category in the form of the asynchronous I/O component, but this was
not considered in depth within this project due to it being built on top of I/O ker-
nel primitives on Linux, BSD/MacOS, and Windows, that are much higher-level
constructed abstractions than those provided by the minimal interface of sel4.)

The pool allocator sits at the bottom, as it is used by basically all other com-
ponents, providing a system for size-classed allocation' and freeing of memory
in a per-thread and thread-safe manner. Allocations it is used for include actors,
queues, messages, and the actor heaps used for object allocation.

Whilst the backing space for housing the per-actor heaps is allocated from the
pool allocator, the heaps themselves are powered by separate heap code, shown
by the separate "Heaps" component in Figure 5.4. The Page Map is another com-
ponent, used as part of the garbage collection, to re-identify the actor that a heap
object was allocated on.

The scheduler maintains runtime threads that each execute a main loop for
finding and processing actors with work available, and processing their message
queues, dispatching the appropriate compiled program code for each message’s
type. Queues of actors for work stealing are implemented using the SPMC queues
- each runtime scheduler thread keeps its own queue that actors are pushed onto
when they have messages added to them, and that the other threads can ‘steal’
from if they have no other work to do themselves.

Actors themselves, as a runtime datastructure, consist of:
+ A pointer to their compiled type

« A (MPSC) message queue

+ Local flags for runtime options / state

+ A heap for object allocation

A garbage collection info datastucture

The garbage collection components sit on top of all of this, as they send special
runtime messages through the same actor message queues, alongside actual actor
behaviour invocation messages generated by the running program.

Full details of the components and garbage collection scheme can be found in
the extensive Appendix A of Clebsch’s Pony thesis [ClebschThesis, Appendix A].

!Size classes range from 2° / 32 bytes, to 220 / 1 megabyte

45

5.4 Pony capabilities

Pony’s OCap model is explained in a page from its tutorial:

"A capability is an unforgeable token that (a) designates an object and
(b) gives the program the authority to perform a specific set of actions

on that object”

So what’s that token? It’s an address. A pointer. A reference. It’s

just... an object.

Since Pony has no pointer arithmetic and is both type-safe and memory-
safe, object references can’t be “invented” (i.e. forged) by the pro-
gram. You can only get one by constructing an object or being passed

an object. [61]

(There is also a noted exception that the C FFI (Foreign Function Interface)
can break this guarantee - however it does not have to be used in all code written
in Pony.)

When combined with the nature of the underlying Pony memory allocation
system, and how ultimately all objects are allocated on per-actor heaps (even
if they are later fully surrendered by the actor they were allocated on and sent
off to other actors), Pony object capabilities can essentially be understood to be
those heap allocations. No other, separate number is used to identify the object -
throughout the whole language and runtime, objects are always identified by their
memory address, and that address, or pointers to it, are the unique, unforgeable
tokens of the capability model. This is covered in section 2.2.3 of Clebsch’s the-
sis on Pony [ClebschThesis], but also highlighted specifically in chapter 6 when

comparing the language message passing to Erlang:

Erlang achieves fully concurrent passive object garbage collection by
copying passive objects sent in messages to the process-local heap of
the destination. This comes at a cost: copying the passive objects can
be expensive when large data structures are passed between actors,
both when the message is sent (due to the time taken to copy the
message) and over time (due to the resulting increased memory us-
age). Copying message contents also means that object identity must
be encoded in the data structure by the programmer, rather than be-

ing implicitly derived from the object’s memory address. While this

46

is less important for a functional language such as Erlang, it is impor-

tant for an object capability language such as Pony. [ClebschThesis,
Chapter 6, page 102]

There is an important note to draw from all this, which is that the current
version of Pony assumes a single address space for execution, and that this is a
key underpinning of how the pointers / memory addresses can be (and are) used

as a reliable means of identity for the object capabilities.

Key Observation 1 Pony in its current form assumes a single address-space, and
this is a strong root of its object capability model - memory addresses can be used as

unique identifiers, and are unforgeable due to its memory allocation model.

47

5.5 Standard Library authorities

Pony’s use of the object capability model is perhaps best exemplified through its
standard library, the entirety of which has been designed with capability-based
security in mind. Much of this stems from the use of ‘static singleton’ primitive
types for various forms of authority. Some examples of this are shown in the
following figures.

Figure 5.5 shows the various capability primitives used within the net pack-
age of the standard library. This package has a more extensive hierarchy of au-
thority, with the base NetAuth stemming further down into specific capabili-
ties for using DNS, UDP, and TCP, with TCP authority being even split further
between both listening and working with an established TCP connection. The
TCPListener and TCPConnection actors are shown with their constructors to
illustrate that corresponding authority capabilities are required to use them, along
with the TCPListenNotify and TCPConnectNotify interfaces that are used to
call into when connections are established.

Figure 5.6 shows the various capability primitives used in the files package.
To interact with the filesystem, you must construct a FilePath class to represent
a path on the file system, which requires the FileAuth capability as an argument.
The FilePath is also constructed with a bit-flag caps argument of possible file
operation capabilities that the path can be endowed with, to allow differing levels
of filesystem access via the constructed FilePath object.

Figure 5.7 shows the capability primitives used as part of the serialise se-
rialisation package. There are explicit authority capabilities descending from the
root AmbientAuth for serialisation and deserialisation, as well as two more spe-
cific capabilities for granting the rights to inspect data that has been serialised
(OutputSerialisedAuth), and the rights to treat arbitrary bytes data as seri-
alised data (InputSerialisedAuth).

48

primitive
AmbientAuth

K package net N

primitive actor TCPListener
h
NetAut new tag create(

auth: TCPListenAuth val,

rimitive notify: TCPListenNotify iso,
B Auth host: String val = "",
neAu service: String val ,

limit: USize val 0,

read_buffer_size: USize val = 16384,
primitive yield after_reading: USize val = 16384,
UDPAuth yield after_writing: USize val = 16384

) : TCPListener tag”

primitive
TCPAuth

actor TCPConnection
new create (
auth: TCPConnectAuth,
notify: TCPConnectionNotify iso,
host: String,

service: String,

from: String =
primitive read_buffer_size: USize = 16384, !
TCPCH yield after_reading: USize = 16384,

primitive
TCPL h

yield after_writing: USize = 16384

interface
TCPListenNotify
fun ref connected(listen: TCPListener ref): TCPConnectionNotify iso” ?
Create a new TCPConnectionNotify to attach to a new TCPConnection for a

newly established connection to the server.

interface
TCPConnectionNotify
fun ref accepted(conn: TCPConnection ref) =>

Called when a TCPConnection is accepted by a TCPListener.

Figure 5.5: Authority primitives and assorted base types for the net package of
the Pony standard library.
Adapted from the Pony standard library sources (packages/net in [62])

49

primitive
AmbientAuth

prmitive
FileAuth

class FilePath
primitive primitive primitive primitive
FileCreate FileLookup FileRename FileTime
new val create(
base: FileAuth val,
primitive primitive primitive primitive E:;: ;EE;Z?(VEL
FileChmod FileMkdir FileSeek FileTruncate FileCreate val | FileChmod val |
FileChown val | FileLink val |
FileLookup val | FileMkdir val |
primitive primitive primitive primitive FileRead val | FileRemove val |
FileChown FileRead FileStat FileWrite FileRename val | FileSeek val |
FileStat val | FileSync val |
FileTime val | FileTruncate val |
primitive primitive primitive primitive FileWrite val | FileExec val
FileLink FileRemove FileSync FileExec), U32 val] val = recover
) : FilePath val”® ?

Figure 5.6: Authority primitives for the files package of the Pony standard
library. The FilePath class is shown with its constructor to illustrate that the
FileAuth capability is required as an argument for interaction with the
filesystem.

Adapted from the Pony standard library sources (packages/files in [62])

primitive
AmbientAuth

prmitive class Serialised
DeserialiseAuth

new ref create(

prmitive auth: SerialiseAuth val,
SerialiseAuth data: Any box
) : Serialised ref” ?
prmitive new ref input()
InputSerialisedAuth auth: InputSerialisedAuth val,
data: Array[U8 val] val
) : Serialised ref”

prmitive fun box apply (
OutputSerialisedAuth auth: DeserialiseAuth val

) : Any iso® ?

fun box output (
auth: OutputSerialisedAuth val
) : Array[U8 val] val

Figure 5.7: Authority primitives for the serialise package of the Pony
standard library. The constructor and various methods of the Serialised class
are shown to illustrate that capabilities are required for the various serialisation

operations.
Adapted from the Pony standard library sources (packages/serialise in [62])

50

5.6 Sample Pony program

A sample ‘ping-pong’ Pony program is given below in Listing 1, for the purposes
of giving a simple showcase of the message-passing functionality of Pony, and
how its reference capability typing system is used to guarantee isolated, data-
race-free access to objects.

In this program, the Main actor constructs a number of Mailer actors, and
‘pings’ each of them by invoking the ping actor behaviour on them. The mailers
then later ‘pong’ back to the main actor via a separate invocation of the pong
behaviour on the Main actor.

A PingPongBall class is also introduced, which the Main actor constructs but
then ‘kicks’ over to the Mailer, which also then ‘kicks’ it back to Main actor. This
helps show how objects can get ‘moved’ between actors, and how write access is
safely handed over, highlighting the way isolated access to objects works, and the
specific reference capability typing requirements required to do this.

A key restriction of Pony’s actor model is illustrated by this program - be-
haviours cannot be awaited, they are send-only. To know when all Mailers have
finished ‘ponging’ back, the Main actor would have to keep track of some sort of
state that will track when the total number of ‘pong’ calls have come back, as part
of either the pong or pong_finished_callback behaviours. An if check on this
state in those behaviours could then be used as the trigger point to continue some

work that needs to happen after all ponging is complete.

use "collections"

class PingPongBall
var _id: U32
var counter: U32 = 0
new create(id: U32) =>
_id = id

fun box tostr(): String =>
"id: " + this._id.string() + ", counter: " + this.counter.string()

actor Mailer
var _id: U32
new create(id: U32) =>
_id = id

be ping(receiver: Main, ball: PingPongBall iso, pass: U32) =>

for i in Range[U32] (0, pass) do
receiver.pong()
ball.counter = ball.counter + 1

end

receiver.pong_finished_callback(
("Mailer" + _id.string() + ": " + pass.string() + " pongs done"),
consume ball

51

actor Main
var _env: Env
var _size: U32 = 3
var _pass: U32 = 0O
var _pongs: U64 = 0

new create(env: Env) =>
_env = env

try
parse_args()?
start_messaging()
else
usage ()
end

be pong() =>
_pongs = _pongs + 1
_env.out.print (" pong!!!")

be pong_finished_callback(msg: String, ball: PingPongBall iso) =>
_env.out.print("got msg: " + msg)
_env.out.print("got ball: " + ball.tostr())
_env.out.print("pongs is @ " + _pongs.string())

fun ref start_messaging() =>

for i in Range[U32] (0, _size) do
// construct a new ball to 'kick' over to the mailer.
// constructed classes are “ref’ rcap type by default, so need to use
// “recover’ to pull back to “iso’ type to permit sending off to the
// other actor.
let newball : PingPongBall iso = recover PingPongBall(i) end
_env.out.print("kicking ball: " + newball.tostr())
// construct a mailer and call ping on it, kicking the ball over to it at
// the same time. the newball wvariable must be consumed so that it can be
// received as “iso’ refcap type
Mailer(i) .ping(this, consume newball, _pass)

end

fun ref parse_args() 7 =>
_size = _env.args(1)?7.u32()?
_pass = _env.args(2)7.u32()7

fun ref usage() =>
_env.out.print(
mailbox OPTIONS
NV number of sending actors
¥ number of messages to pass from each sender to the recetiver

nwun

)

Listing 1: Sample ping-pong ‘mailbox’ Pony program.

Adapted from ‘mailbox’ in examples folder of ponyc repo [62], with addition of a
PingPongBall class to illustrate reference capability typing required for sending
objects to other actors.

52

5.7 ‘Causal’ messaging

A property that is key to much of the design of Pony and its novel garbage collec-
tor is that of causal messaging. This is described in Clebsch’s thesis as ‘a message
order guarantee wherein an effect (a message) does not get delivered until after all
of its causes, where the causes of a message are every message that the sending
actor has previously sent or received’ [ClebschThesis, §2.2.4]. This essentially
means that the message queues of actors are always processed in order, messages
are never selectively skipped or handled earlier than others, and that no jitter or
delay might cause some message A; to arrive after any effects caused by some

later subsequently-sent message A,.

53

5.8 ‘Distributed Pony’

Pony in its current release-available form is ultimately still a single-process and
single-node programming language, in that all of its actors and objects are only
allocated within the one address space of a single process, and no actor-to-actor
communication is available inherently at the language level without setting up
explicit communication channels like sockets between separate Pony runtime in-
stance.

However, work has been undertaken to develop a ‘distributed’ version of
Pony, and Clebsch’s thesis on the language even has many accomodations for
a distributed design (see sections 3.2.3, 5.6, and 6.6 of ClebschThesis). A separate
masters thesis by another early Pony developer, Sebastian Blessing, [11] investi-
gated an attempt to create a version of Pony to support ‘transparent distributed

programming’, which is defined as follows:

Any application written in Pony should scale in a distributed network
of runtime process without any changes to the code being necessary.
This task is challenging, because we want to achieve that any con-
ceptual property given by Pony in the concurrent setting also holds
in a distributed context. [11]

One of the key issues in the distributed context is maintaining the causal mes-
sage delivery that Pony is built upon. In particular, the (inherently-)distributed
garbage collection is powered by a cycle detector that is reliant on message de-
livery between actors being causal, and thus handled in an expected sequence.
Blessing’s thesis focuses on the use of a tree-network topology, combined with
properties of TCP (Transmission Control Protocol) to maintain causal message de-
livery guarantees [11, Chapter 3]. Clebsch’s thesis, published around 4 years after
Blessing’s, proposes some extensions to the garbage collection protocols [Cleb-
schThesis, §5.6 and §6.6] that would relax this requirement on causal order to

pairwise FIFO order, but this does not yet appear to have been implemented.

54

Chapter 6

Comparison of related concepts

in Pony and sel4

Whilst not completely equivalent in type, with one being a programming lan-
guage and the other an operating system kernel, seL.4 and Pony (and its runtime)
are both ‘systems’ that can be compared on many similar points, or along com-
mon lines. This is a useful first starting point for designing any form of mapping
of Pony onto seL4, to see what alignment can or cannot be found along these lines

- several such comparison points are covered in the following sections.

55

6.1 Synchronous v.s. asynchronous models

One quite important foundational difference between Pony and sel4 is that their
message passing models are somewhat mismatched. Pony is highly focused on
asynchronicity, with the core message passing between actors being inherently
asynchronous and send-only. seL4 IPC on the other hand is strongly focused
on synchronous communication. The two models are explored and compared in
detail in this section.

Message passing in Pony is inherently asynchronous. When an actor invokes
another actor’s behaviour (the core message passing action in Pony), a message
is simply pushed to the message queue of the target actor (which is actually just
a linked list of messages) - see Figure 6.1 - and the source actor continues its
next line of execution. Critically, behaviours cannot be awaited - to have the
source actor do something as the result of whatever the sent message is supposed
to trigger, the actor itself must be passed as an argument for the target actor
to (asynchronously) invoke behaviour of later once it is scheduled to handle the
message it got sent.

This contrasts with seL4’s model, which is for the most part inherently syn-
chronous. When seL4 IPC Send()s or Call()s are conducted, they block the
calling thread, and are typically expected to be immediately handled by a server
thread that is blocked on an IPC receive - otherwise the send/call is queued for
being handled by the first available receiver.

A Pony implementation on seL4 would need to be quite careful about this
distinction, as the control flow of Pony’s runtime scheduler threads (and when
they move from one actor to another) needs to be carefully managed and reasoned

about.

1: function MESSAGEQ_PUsH(messageq_t* q, pony_msg_t* first, pony_msg_t* last)
2 atomic(last.next < null)

3: thread_fence()

4: atomic(prev < q.head, q.head < last)

5 prev.next < first

6 return is_empty?(prev)

Figure 6.1: Pony runtime’s message-queue push function, used for all message
passing

Adapted into psuedo-algorithmic form from messageq_push in
libponyrt/actor/messageq.c in the ponyc repo [62]

56

The kernel does also provide non-blocking send and receive functions, which
can be used on IPC endpoints. However, there is a critical detail that the non-
blocking send cannot be reliably used for depositing messages, as it only works
as expected when a thread is already blocked and waiting on the endpoint, and
does not give any indication of whether the sent message was actually delivered or
not.!2 This is in part due to Endpoints themselves not being the storage location
for IPC messages - on send, messages are either left waiting in the IPC buffer of the
sending thread (when a blocking send occurs without a receive ready), or stored in
the IPC buffer of the receiving thread (when a non-blocking send succeeds and the
receive thread is already blocked and waiting). Endpoints themselves internally

only contain pointers to thread control blocks.

Key Observation 2 seL4 IPC does not support reliable non-blocking sending - an
NBSend call to an Endpoint silently drops messages if a thread is not ready and
blocked waiting on the other side of the Endpoint.

The NBRecv method is designed primarily for use with seL4 Notification ob-
jects, not seL4 endpoint IPC. Notifications exist primarily to provide a means of
synchronisation between threads, and do provide more of an asynchronous model
- however, critically, they do not provide for capability transfer as part of their in-
vocation, which Endpoint IPC does.

It is also worth noting that Send-only and Receive-only IPC is also even dis-
advised in general when developing for seL4, other than for "protocol initialisation
or exception handling" - see the "IPC no-no’s" section of [31].

Pony has been designed with an assumption that the message queues it uses
are unbounded, to ‘prevent both deadlock and incorrectly reporting resource ex-
haustion’ [ClebschThesis, §A.6.1]. More broadly, it assumes that message send-
ing always succeeds, and that it is always possible to successfully send messages.

A strict mapping of Pony’s message passing onto seL4’s IPC / message passing

'From the selL4 manual: ‘If the message cannot be delivered immediately, i.e., there is no re-
ceiver waiting on the destination Endpoint, the message is silently dropped.” [NBSend syscall in
seL4Manual, §2.2]

2This lack of reliable non-blocking send is not a feature of all capability-based operating systems
- for example, Barrelfish has a similar feature of endpoint-based IPC for same-core communication,
with message sending that is always non-blocking, and returns a reliable error code if delivery
cannot take place. Endpoints themselves are also buffered, allowing for multiple sequential sends,
and ultimately just represent particular memory locations on a heap area of the ‘domain control
block’ (rough equivalent to seL4 thread) [8, §5.1], making it more straightforward to multiplex
sending.

57

mechanisms would not be able to provide these guarantees in an asynchronous

context, without extra implementation on top of the mechanisms.

58

6.2 Message-passing message size

Message size is another aspect of these communication models to consider and
compare. seL4 IPC messages are limited to a maximum size of 120 CPU words
(defined from the seL4_MsgMaxLegnth constant in the lib_sel4 library) - on 32-
bit architectures this totals 480 bytes, on 64-bit, 960 bytes.

Pony message sizes do not appear to have any upper bound - arguments are
packed on to the end of message struct after a fixed-size standard header, so the to-
tal message size will be based on the size of the types of the arguments. Messages
are always dynamically allocated, so the message size is passed to the allocator as
an argument at runtime.

The conclusion to draw from this is that any mapping of Pony’s language-
level message passing onto seL4 IPC message passing would either have to in-
volve variable-length transmission (which can be common for microkernel IPC
protocols), or have to introduce strictly bounded message sizes at compile-time

by only allowing enough arguments to fit in one IPC invocation.

59

6.3 Pony allocation sizes v.s. seL4 object sizes

Pony and seL4 both use capabilities to represent access to memory, albeit in slightly
different ways, and, for the focus of this section, with different sizing considera-
tions when it comes to areas of memory.

Pony’s ocap model, covered in 5.4, ultimately means that all Pony objects
are allocated by the runtime allocator, and all object references/capabilities are
passed by the runtime as pointers to those allocations - albeit in a manner that
is guaranteed to be safe by the type system and the manner in which the Pony
compiler generates machine code (e.g. the compiler knows the sizes of all types
at runtime and uses this to ensure machine code would never be generated that
would access unmapped memory).

The appendix sections in Clebsch’s thesis [ClebschThesis, mainly §A.3.1] de-
tail this allocator, outlining its use of power-of-two size-classes for allocation, and
that allocations are always rounded up to the first size class that fits them. Impor-
tantly, it also describes that the allocator’s minimum allocation size is 32 (2°) bytes
- in part due to the design of the allocator and how it uses space in freed alloca-
tions to store bookkeeping data (specifics described in [ClebschThesis, §A.3.3]).

This contrasts somewhat with seL4’s units for working with memory. System
page size (usually 4KB, 2!%) is in many cases the smallest level of granularity that
can be worked with, especially in the scenario of sharing or sending physical
memory between protection domains. As mentioned in 6.2, IPC messages are
also limited to a max size of 480 or 960 bytes.

A takeaway from this comparison is that, for Pony objects between the max
IPC size and the memory page size, either multiple IPC calls are required for trans-
ferring the object’s data between protection domains, or full single pages are re-

quired per-object, which would potentially waste an amount of space.

60

6.4 Memory Address spaces

Memory addressing is fundamental to both any programming language and any
operating system, and as such is an important element in the design of both Pony
and sel4.

A large part of how sel4 is able to provide its strong isolation guarantees
comes from how it does virtual memory management. Components are typically
strongly isolated into separate address spaces, with explicity-supplied communi-
cation methods (IPC or explicitly shared memory) being the only way to commu-
nicate between these address spaces.

Pony’s current implementation is built around quite a strong single-address-
space assumption, as covered in section 5.4. Objects in Pony are identified via the
memory address of their heap allocation, and communication between actors is
implemented via linked lists within the same address space. This proves an issue
when it comes to designing any mapping for implementation, as will be discussed

in section 7.

61

6.5 Capability enforcement / Trust boundaries

Pony and sel4 both enforce trusted separation of resources using a capability
model, albeit via different means.

In sel4, this separation is enforced via its system of CSpaces / protected tables
of capabilities, and more specifically runtime checks performed by the kernel
when handling system calls (which are the means of ‘invoking’ capabilities).

Pony on the other hand can enforce much trust separation without runtime
checks, due to the nature of its type system - in fact it was built with a goal to
prove that many such runtime checks could be elimintated by a strong type sys-
tem [ClebschThesis, §1]. This means that the enforcement of its object-capability
system is mostly performed via the compiler at project compile-time, with as-
sumptions that the generated code, its use of the runtime, and the runtime itself
(e.g. the memory allocator) is safe and correct. These assumptions underlie guar-
antees that objects will never be allocated on the same memory area, and that the
ownership, isolation, and sharing rules of the language along the lines of the type
system are enforced, which ultimately provide the object capability safety model
of the language.

Even runtime checks such as file operation permissions are still guided by the
type system, as the checks performed are still against static types. An example of
this is shown in the rename method of the FilePath class from the Pony standard

library below in Listing 2.

// abridged snippet from file_caps.pony
use "collections"

type FileCaps is Flagsl[
(FileCreate

| FileChmod

| FileChown

| FileLink

| FileLookup

| FileMkdir

| FileRead

| FileRemove

| FileRename

| FileSeek

| FileStat

| FileSync

| FileTime

| FileTruncate

| FileWrite

| FileExec

),

U32 1

// abridged snippet from file_path.pony

62

use Erename[lS?](old_path: Pointer [U8] tag, new_path: Pointer[U8] tag)

class val FilePath
4 FilePath represents a capability to access a path. The path will be
represented as an absolute path and a set of capabilities for operations on
that path.

wnn

let path: String

wnn

Absolute filesystem path.

nnn

let caps: FileCaps = FileCaps

wnn

Set of capabilities for operations on “path’.

/) -

fun rename(new_path: FilePath): Bool =>
mnn

Rename a file or directory.
wun

if not caps(FileRename) or not new_path.caps(FileCreate) then
return false
end

== [drename (path.cstring(), new_path.path.cstring())

Listing 2: Cut-down view of the FilePath class in the Pony standard library,
illustrating a runtime capability check.

Taken from the ‘files’ package of the Pony standard library, available in the ponyc
repo [62]

The usefulness of this resource separation enforcement is best understood or
examined by looking at the scenario of ‘untrusted’ code execution. On seL4, if you
have code that you do not trust, you would normally either execute it within a vir-
tual machine, or some other locked-down protection domain, where the CSpace
of that domain only has capabilities that allow it to do explicitly what you want to
allow the code to do with the rest of your system (typically, in the form of capa-
bilities for endpoints to other components). The checks performed by the kernel
give this separtaion / isolation guarantee.

In Pony and other object-capability languages, the trust boundary is similarly
the object capabilities handed to the untrusted code - in a well-designed ocap sys-
tem with no global variable authority, all that malicious code is capable of doing is
via the objects specifically handed to it when first called. In Pony specifically, sys-
tem operations such as filesystem and network access can only be performed via

explicitly-passed object capabilities that derive from the AmbientAuth capability

63

handed to the Main actor of any Pony program. (see section 5.5 for an overview
of some of these authority capabilities).

A limitation of Pony is that it does not currently have the ability to dynami-
cally evaluate code, as in other ocap languages like Caja [46] (with its motivating
use case of running unknown 3rd-party scripts atop a pre-existing javascript en-
vironment on a web page). Pony also does not quite support the ocap paradigm of
creating limited execution contexts, such as the confine (exprSrc, endowments)
function®, or more recently, ‘realms’ and ‘compartments’, from the Secure Ec-
maScript (SES) system. However, there is still a motivating use case for Pony’s
ocap system of including 3rd-party-authored library code into a Pony project.
Because of the object-capability guarantees, you can be sure that code you use
from a 3rd-party library will only ever be able to perform certain classes of ac-
tions (e.g. use the filesystem, or use the network), if the actors / classes / functions

/ interfaces of that code were explicitly passed the authority to do so.

3See [47, §2.3 SES: Securing JavaScript] for definition / more info
“See README . md for SES in the packages/ses/ folder of [1], and the associated TC39 proposal
for standardising Compartments within the ECMAScript / JavaScript standard [59]

64

6.6 API contracts over message-passing channels

Message-passing as a mechanism is only useful to the degree of any agreement
between either sides of the communication channel on how to communicate.

In sel4 userspace, having a capability to an endpoint is only useful so long as
you know how to talk to whatever is on the other side of it. (The same can also be
said of non-IPC capabilities for objects such as Untypeds and memory objects -
when it comes to using them, it is a matter of knowing the right message format
to deliver to the Call() syscall interface, as covered in section 1.2). There can
also be performance concerns when it comes to communicating over an endpoint
- the IPC ‘fastpath’ only works when no capabilities are being transferred as part
of the IPC call and when the message is small enough to fit in a dedicated subset
of message-passing registers®.

Additionally, the capability transfer mechanism provided by selL4 IPC does
not by itself give any information about the type of the capability that comes
through when receiving a transfer (see [66, §4.2.2 Capability Transfer]) - for this
to be understood, there must be something within the contract between sender
and receiver to dictate the information (or assumption) of what capability type
has come through as part of the transfer.

This leads to the API contract across an Endpoint channel being quite impor-
tant. In CAmKES [26], components are specified with ‘procedure’ APIs that give
C-like arguments and return types - see Figure 6.2 - and which ultimately are
consumed in other C files by generated C functions with equivalent type argu-
ments. As another example, the seL.4 Foundation’s 1ibsel4rpc library ¢ provides
a means for ‘clients’ to request resource capabilities from some other ‘parent’
/ ‘server’ over an Endpoint channel, with a simple typing contract established
through the use of Google’s ‘Protocol Buffer’ data serialisation framework [32]".
However, as 1ibsel4rpc is still ultimately implemented in C, no language-level
type information can be leveraged to make the message protocol come ‘for free’ or

be automatically type-checked - a ‘type’ field in the message struct still has to be

>The number of registers for fastpath IPC is specified by the seL4_FastMessageRegisters
constant, which is anywhere between 1 and 4 depending on the architecture the kernel is targeting
and what feature flags were set during compilation.

See the libsel4rpc folder of the sel4_projects_libs project / repository: https://
github.com/sel4/sel4_projects_libs/tree/master/libsel4rpc.

"Note that 1ibsel4rpc uses nanopb for its protocol buffers specifically, an ANSI C implemen-
tation of the framework - see https://github. com/nanopb/nanopb or https://jpa.kapsi.
fi/nanopb/docs/

65

https://github.com/seL4/seL4_projects_libs/tree/master/libsel4rpc
https://github.com/seL4/seL4_projects_libs/tree/master/libsel4rpc
https://github.com/nanopb/nanopb
https://jpa.kapsi.fi/nanopb/docs/
https://jpa.kapsi.fi/nanopb/docs/

procedure DHCP {
uint32_t discover(in uint64_t hwaddr, out uint32_t siaddr);
uint32_t request(in uint32_t ip, in uint32_t siaddr);

}

component Client {
control;
uses DHCP dhcp;
}

component Server {
has mutex lock;
provides DHCP clientl;
provides DHCP client2;
provides DHCP client3;
provides DHCP client4;
}

assembly {
composition {
component Client a;
component Client b;
component Client c;
component Client d;
component Server s;

.clientl);
.client2);
.client3);
.client4);

connection seL4RPCCall cl(from a.dhcp, to
connection seL4RPCCall c2(from b.dhcp, to
connection seL4RPCCall c3(from c.dhcp, to
connection seL4RPCCall c4(from d.dhcp, to

n n n n

Figure 6.2: Example CAmKES spec for a DHCP server, showing the C-like API
defined in the DHCP procedure block.

Adapted from camkes/apps/dhcp in the main / example apps CAmKES reposi-
tory (https://github.com/sel4/camkes)

manually inspected, and the correct C structs still have to be manually selected
via a generated union to get the correct access to the correct message / struct
format depending on the ‘type’ field.

In Pony, this kind of API contract across the message-passing primitive of
actor-to-actor communication is defined by the behaviours on actor types de-
fined in program source code and their type signatures, and thus set / fixed at the
point of compilation. Behaviours are ultimately compiled out with various iden-
tity numbers, unique within the scope of a particular actor type, that are used by
any code generated to invoke those behaviours on actors of that type - the rele-
vant number of the destination behaviour is what is inserted into the id field of
the message sent to the destination actor, and the arguments of the behaviour are

simply appended to the end of the message after a standardised message header.

66

https://github.com/seL4/camkes

In fact, Pony does not provide any language-level way to use the lower-level raw
message-passing functionality (i.e. send a message with arbitrary integer ID) at
all - in part because the message-passing is also used by the runtime for garbage
collection and various other purposes, which use some special reserved message
IDs, but also in part because the static type system of behaviours provides a set
of guard rails to prevent incorrect messaging behaviour. This latter point is im-
portant to note, because the fact that these guard rails are a static assumption
of the language eliminates the requirement for any support for error handling if
incorrect messaging were to occur, especially when combined with the design of
Pony’s message passing being send-only, as covered in section 6.1. (This approach
of eliminating classes of error-handling through static typing is also taken by the
C++ Actor Framework [16, §5.2].)

Finding some way to leverage this typed message-passing system on top of
seL4 IPC thus became an attractive goal of the research, as will be covered in the
next section - especially if the seL4 IPC capability transfer could somehow also
be modelled as part of this API model.

It is worth noting that the lack of access to lower-level message-passing is
not necessarily the case in other ocap languages. In E [45, 43], remote calls
are made using an ‘eventual-send’ syntax that in the end is just sugar-syntax
forE.send(dest, "method", argl), which returnsa Promise representing the
eventual result of the call (the E static is part of of a helper library called ELib, a
Java library distributed as part of the language). Dr. SES [47] has a similar !
‘bang’ operator that is similarly sugar syntax for Q. send - see Figure 6.3. In these
situations, the static guarantees present in Pony’s system no longer apply, so an
error-handling mechanism is required: if the message-passing is made with an

incorrect method name, the promise is ‘rejected’ into an error state.

Immediate syntax | Eventual syntax | Expansion

p.m(x,y) p ! m(x,y) Q(p) .send("m",x,y)
p(x,y) p ! x,y) Q(p) .fcall(x,y)
p.m p!m Qlp) .get ("m"

Figure 6.3: Examples of the infix ! / "eventually” operator from Dr. SES and its ‘Q’
library.
Taken directly from [47, §2.4, page 7]

The idea of having ‘contracts’ over ‘channels’ is also a key concept of the

Microsoft Singularity project, as briefly mentioned in subsection 4.6.3 of the ocap

67

language review.

68

6.7 Authority for memory allocation

As discussed in section 1.7, a core problem involved in the design of systems on
top of sel4 is that of memory allocation. Systems are often built with some form
of ‘memory server’ that is given all the Untyped capabilities that are provided
from the boot process. This server can be set up with whatever allocation policy
is appropriate for the system at hand being built - i.e. some trusted tasks may be
given higher memory request quotas than others. It is not uncommon for some
tasks to be constructed with no access to the memory server - i.e. they will only
ever be able to use the amount of memory they were initially set up with.

Pony on the other hand makes quite a strong assumption that memory is
freely available and that it is always possible to ask for more. Because message
queues are unbounded, they can in theory The memory allocation infrastructure
of the language does not allow for handling the case of running out of memory
(as can be seen in Figure 8.3, which will be covered later in chapter 8).

More generally, it can be argued that most programming languages (e.g. those
built on POSIX foundations and assumptions) come with an ambient authority
for memory allocation. Capability-based systems like seL.4 where memory is ac-
counted for through the capabilities introduces the possibility for additional mem-
ory to, in theory, come from multiple possible authorities, or to not even be ac-
cessible at all. Even an object-capability language like Pony does not model this
- although it could be argued to be out of scope for the language given its strong
implicit reliance on regular memory allocation for actor-to-actor communication.
This could be an interesting avenue for further object-capability language re-

search.

Key Observation 3 Pony, and even object-capability languages more broadly, do
not include any explicit modelling of authority for the right to request more working
memory, which is a somewhat unique feature of confined-component systems built

on a microkernel like seL4.

69

Chapter 7

Possible useful Pony ocap

models for selL.4 programming

Now that a background of seL4 and Pony has been established, and that a compar-
ison has been done of their related concepts, we can come to the task of attempting
to overlay the two capability models.

The stated goal of this thesis / project (as per chapter 3) was to see if there was
any way to use an object-capability language to make programming a capability-
based operating system easier. Hence it was not simply just a question of getting
the language to “work’, but to see if there were ways the language could be adapted
to the operating system’s capability environment in a way that could make the
operating system capabilities more ‘natural’ to work with.

Four possible such ‘models’ for implementing Pony on seL4 were thus ex-
plored - each with a different particular focus in terms of similarities between the

language and the operating system that could perhaps be lined up in a useful way:

70

7.1 Handing off/around selL4 IPC endpoint(s) for talk-

ing to objects

An early possible language-to-OS caps model considered was the idea of using
seL4 endpoints to represent remote Pony object capabilities, as ‘the rights to talk
to an object’, given Endpoints are already capability objects on selL4, and a pri-
mary means of seL4 cross-domain communication. However, this became less ob-
viously feasible as the work of comparing selL.4 and Pony (chapter 6) progressed.

The main issue with this model is with the blocking nature of the interac-
tion with Endpoints, as covered in section 6.1, and critically, the fact that non-
blocking send cannot be used as a means for reliably delivering messages (Key
Observation 2). In a situation where individual endpoints were used for repre-
senting every remote object, there would thus be a reliance on a thread calling
Recv () on the other side to prevent any invocation of the object from becoming
a blocking operation. Threads cannot call Recv() on multiple objects, and even
with the facility of NBRecv () allowing for a thread to check if work is available,
the endpoints would need to be checked in some sort of loop that would increase
with size with the number of objects at play, and induce an ordering decision over
how to check all the available endpoints for messages. With a large number of
actors/objects, this would likely soon blow out to become a situation involving a
very large number of threads required.

Badging multiple capabilities to the same endpoint with the memory addresses
of the object capabilities could be one way around this, as then the side giving out
the endpoint would only need to blocking receive on a endpoint per communi-
cation channel. However, this was left outside the scope of the project and not
considered further.

Given these issues (and mainly the issue of multiplexing over many end-
points), an alternate approach was developed for investigating further, where
message-transfer between protection domains would be multiplexed through some
kind of "message pump" endpoint. This, and other broader issues involved in

working with remote actors / objects is covered in the next section.

71

7.2 Remote actor communication through message pump

endpoint

A conceptually simple starting place for an integration of Pony that works both
with seL4 confinement and Pony’s inherent actor model is one where actors are
somehow spread across seL4 protection domains (CSpaces / address spaces). This
would be roughly analagous to the ocap paradigm of ‘vats’: spaces within which
sets of objects exist and can be addressed via.

There are several problems introduced at this point, which make any imple-

mentation complicated, as it must address all of them in some way:

+ Naming problem - how to identify and/or refer to specific remote actors?
Across address spaces, Pony’s current ocap model of "the actor’s identity is

its address" won’t hold.

+ Bootstrap problem - how to obtain a remote reference to a remote actor in

the first place?

» Explicit v.s. implicit remoteness / placement problem - should remote ac-
tors be represented any differently to local ones? Should their APIs be any
different or should there be a design goal to keep them the same? Should
actors be explicitly placed / set up in remote domains, or will their setup be

more automated?

« Communication mechanism - by what means can actors talk to each other

across protection domains?

« Communication channels - by what topology do actors communicate to
other actors? Do they have direct channels between them or do they com-

municate via a mediator?

« seL4 capability transfer - can the actor messaging be set up to support mov-
ing capabilities from one domain to another, as well as simply passing val-

ues and actor IDs as per the current Pony model?

The naming and placement problems are addressed to some degree by Sebas-
tian Blessing’s Distributed Pony thesis [11], as introduced briefly in section 5.8.
For naming, actors are still identified using their allocation memory address on

the node they are allocated on, but also combined with a ‘node ID’ that is unique

72

for each node in the ‘cluster of Ponies’. A trick similar to the process of ‘pointer
tagging’ is used for achieving unique identification across the cluster within only
64-bits, by leveraging an observation or assumption that “The memory subsystem
actually only uses 48-bits for main-memory addressing.’ [11, §3.5.1/ page 46] (This
assumption is difficult to cite or confirm, but appears to be an assumption that can
be made for current x86-64 systems - 48 bits allows for addressing 256 terabytes
of memory, an upper limit that is quite assumable for current hardware). This is
combined with an observation that ‘Pony’s pool allocator aligns any allocation on
a 64B boundary. Hence, the lower 5 bits of any memory address are always zero.
[11, §3.5.1 / page 46-47]' This leaves 21 bits spare for storing a node ID, giving a
roughly 2 million upper limit to the number of nodes. A similar approach could
probably be used for seL4 protection domains, so long as they are identifyable
within the running selL4 system by a reliable ID.

The communication problems are addressed next. On selL4, the two main
means of cross-domain communication are either IPC through endpoints, or shared
memory mapped into both address spaces.

seL4 IPC comes with the general requirement of being synchronous, which
presents as a mismatch of sorts with Pony’s asynchronous message-passing model,
as discussed in section 6.1. Shared memory is usually the go-to means for asyn-
chronous communication in seL4 systems - However seL4 capability transfer can-
not be directly facilitated this way, without some other control mechanism over a
communication protocol on the shared that involves making CSpace modification
operations. (An approach like this would be similar to how the Barrelfish operat-
ing system handles cross-core capability operations, using a userspace ‘monitor’
- see §4.1 and Chapter 5 of [57], which covers various possible approaches to
handling capabilties distributed across multiple cores). This approach was not
explored as part of the project due to the increasing stack of implementation re-
quirements on top of the initial hurdle of just getting the existing Pony runtime
elements working in the seL4 environment, but could potentially be explored in
other work. A shared-memory approach might also make sense for a Pony im-
plementation on selL4 that does not include language-level support for capability
referencing and transfer between protection domains, but since leveraging a lan-

guage to make operating system capability management easier was the goal of

This 64-byte alignment may have been a historical assumption a different version of Pony from
the time of the thesis (~2013) as the current release Pony allocator has a 32-byte minimum allocation
size.

73

this project, this out of scope and not explored either.

Blocking behaviour in Pony’s message passing is undesirable as the language
has been built around quite a strong non-blocking assumption to prevent dead-
lock (see [ClebschThesis, §2.1]). However, decoupling the blocking behaviour via
means of an intermediate ‘message pump’ thread could alleviate this. Whilst seL4
IPC is blocking, it is generally designed to be used under an assumption that the
thread on the other side of the IPC will already be blocked on a prior Recv ()
or ReplyRecv () call, ready and waiting to receive data. It is also in general de-
signed primarily for providing a fast context switch between protection domains
on the same core [31], as part of its heritage from the original L4 microkernel.
Cross-core IPC is supported, through means of using the thread IPC buffers, but
is not recommended [31, "IPC no-no’s"], cannot provide the usual direct control
flow switch associated with L4/seL4 IPC, and comes with a performance hit as the
receive thread will only resume when re-scheduled on the other core.

Under this model, to provide for fast cross-core message delivery, a possible
solution could be to have "message receiver” threads set up within each protection
domain for any remote CPU core that needs to be able to deliver messages into
the current protection domain, with each receive thread having its affinity set to
that source core, and having an associated message pump endpoint set up that the
source protection domain would have a capability to. These receive threads would
be assigned to a simple classic seL4 server ReplyRecv loop that only receives
messages, then finds the appropriate destination actor for a received message,
pushes the message onto its queue (which is a lock-free, thread-safe operation),
then returns back to the ReplyRecv call, handing control flow back to the actor
that sent the message. This would be likely to be a fairly quick operation with
direct control flow transfer, maintaining the design property of Pony that message
delivery is quick and non-blocking.

In a simplified environment of one protection domain (and thus address space
of allocated actors), each protection domain would have N5 — 1 receive threads,
alongside the Pony runtime thread for that domain’s core, totalling Neores X(Neores—
1) extra threads and endpoints. This arrangement is shown below in Figure 7.1.

Ultimately, this cross-core message delivery system was not able to be imple-
mented or tested in this project due to the preliminary work required in getting
the Pony runtime components working on sel4, as covered in chapter 8, but could

be an approach to experiment with in the future.

74

L4 >E=— | &< &)
Run0 Run1
/@/ ~
3 V'l I~ 3
0 1
MRecv1 MRecv0
(aff=cpu1) (aff=cpu0)

A A

\ e o) \ o / e //
) />< \(@j:
LY N VD
&= 3 /@'ﬁ 3 3 C= 3 C=
o S s\
2 3
3 AN P ¥ 3
i w07
[3) »Cmm—| L=< L?]
\e- Y, N =,
Legend

()

C=
ry
L%
Run[n]

3

MRecv[n]

[E] = Protection Domain (cspace + vspace)

= IPC endpoint

= Capability
(arrow designating the resource the capability is for)

= Pony runtime thread for protection domain

= Message receiving thread
for protection domain n -> current domain.

("aff" = thread affinity, i.e. which core the thread is pinned to)

Figure 7.1: Example of seL4 threads and endpoints required for cross-domain mes-
sage queue message-passing support for a quad-core, quad-domain Pony runtime

7.3 Handing off physical memory that contains data

Another way of aligning concepts in Pony and seL4 that was considered was to
see if the "handoff" nature of Pony’s reference capability system when message-
passing could be leveraged to represent handing away mapped memory from one
seL4 protection domain across to another address space.

When making a Pony message-passing call to another actor, if a variable is be-
ing passed along with the message, there are various typing guarantees that must
be met depending on how the variable will be used on the other side. A simple ex-
ample of this is shown below in a snippet from the code sample of Listing 1, where
for the Main actor to give a Mailer actors iso write access to the PingPongBall,
the Main actor must surrender its own access to the PingPongBall by ‘consum-
ing’ its own reference to the ball (and thus removing its ability to continue to

access the ball further along in the code / current scope).

// within a function body in 'actor Main':
let newball : PingPongBall iso = recover PingPongBall(i) end
_env.out.print("kicking ball: " + newball.tostr())
// construct a mailer and call ping on it, kicking the ball over to it at
// the same time. the newball wvariable must be consumed so that it can be
// received as “iso’ refcap type
Mailer (i) .ping(this, consume newball, _pass)

Under the right conditions in concert with managing sel4 capabilities for
physical memory, this kind of handoff could be represented on seL4 by the pro-
cess of physical backing memory at some virtual address being unmapped from
the current virtual address space, and then transferred via seL4 IPC. This is in
some ways similar to the splice () system call on Linux [60], which allows mov-
ing data between file-descriptor objects such as pipes, but on seL4 this would be
at a much more granular level of unmanaged physical memory capabilities.

As per the discussion in section 6.3, this would have a limiting smallest-allocation
size of a system page (i.e. 4kb). Additionally, large objects would have to be either
allocated on larger pages, or carefully kept mapped via multiple sequential pages.
This model also, as per discussion in section 7.2, hinges on some ability to either
establish a Pony runtime with actors in separate address spaces, or to establish a
communication mechanism between actors running in different address spaces.

With a functioning Pony runtime for seL4, this model could potentially be
investigated and evaluated (both in terms of performance and usability). However
as a fully-functional runtime could not be achieved in the scope of this project,

this was not possible, and was not investigated any further.

76

7.4 Embed selL4 capability types into Pony types

The first place to start for an implementation of Pony on sel.4 should arguably be
to get seL4 capability types and their invocations represented within the language
somehow. As code written in Pony on its own (without custom C extensions)
cannot invoke system calls directly, some types representing selL4 primitives are
essentially required to make working with them in any Pony program possible.
There is an interesting challenge involved in trying to maintain object-capability
safety for userspace representations of capabilities, which are ultimately just stack
or heap allocations containing pointer-like numbers for objects in some foreign
address space. selL4 object types could be defined in Pony that accept capabil-
ity addresses as their constructor argument, but this would essentially break the
capability model, or provide an unsound one, as they could be constructed with
arbitrary number arguments. On the seL4 system side of things, security would
still be maintained, as the capability addresses are still validated by the kernel - ca-
pability operations with invalid addresses would simply fail with error responses.
Ideally, similar to the object-capability model, capabilities should only be ac-
cessible if you start with them (e.g. from a root program argument), or if you are
se
This would likely require the functionality of private constructors, which is
something that Pony does not seem to support in its current version.
Regardless, even Pony types for seL4 kernel objects with capability address
constructor arguments would be useful, as it would provide for a more logical
object-oriented programming model for things that are ultimately kernel objects

with various ‘methods’ available for them, depending on their type.

77

Chapter 8

Porting the Pony runtime

environment to selL4

As part of this project, work was undertaken to port Pony’s runtime environment
into a native seL4 project / environment, with the goal of being able to support
running compiled Pony programs linked against an seL4-friendly 1ibponyrt, or
at least some form of skeleton Pony environment to test various integration mod-
els with more manually. Due to time constraints, and the complex tradeoffs in-
volved in possible integration models (as covered in chapter 7) making it unclear
which integration path forward was worth committing to trying to implement, a
full runtime environment was not quite achieved, but several components of the
runtime were nonetheless successfully ported. This section will discuss the steps
the port was broken down into, and the work involved in performing the port !.

To briefly recap relevant parts of chapter 5: Pony programs are ultimately
compiled code blobs from LLVM containing calls to various pony ‘runtime’ func-
tions, which then get linked against a separately-compiled 1ibponyrt library
(written in C) which provides the implementations of all these runtime functions.
Thus porting the code of 1ibponyrt into an seL4 environment became the main

first goal of the implementation / porting effort.

'The port was using commit ca6d725043£3637b6e4246450945b9d6£3778a80 of the ponyc
codebase, from March 19th, which was the HEAD commit around that time and only a few commits
ahead of the v0.49.1 release of the language

78

8.1 Which runtime components to port first? Analysis

of the main() procedure of a Pony program

To avoid the infeasable approach of simply putting all the 1ibponyrt code into an
seL4 environment and trying to fix any/all compiler errors presented, a piecemeal
approach was taken of porting small parts of the runtime function-by-function /
file-by-file.

This raised the question of which runtime elements to port first. To guide
choosing elements, the main () procedure of a small Pony program was analysed
to see what runtime calls it used specifically, and thus which calls would be the
minimum necessary to port to support a small / trivial Pony program.

Compiled Pony programs are produced via the Pony compiler’s use of the
LLVM C API. Programs can be outputted/viewed as LLVM IR, but disassembly of
the final binary offers the best view of the program runtime functions that are
used to kickstart the Pony program. The main() procedure of a sample Pony

program is shown in Figure 8.1.

79

[©x00007260]
int main (int argc, char **argv, char **envp);
; var int64_t var_8h @ rs
; var int64_t war_1@h
; arg char **argy © i
; arg char **envp ©
push rbp
push ris
push ri4
push ri3
push riz
push rbx
sub rsp, @x18
mov rbx, rdx 5 envp
mov r12, rsi ; argv
call pony_init ; sym.pony_init
mov r13d, eax
call pony_ctx 3 sym.pony_ctx
mov ris, rax
lea rsi, [@x00022699]1 inté4_t arg2
mov rdi, rax inté4_t argl
xor edx, edx 5 inté4_t arg3
call pony_create ; Sym.pony_create
mov rl4, rax
mov rdi, ri5s int64_t argl
mov rsi, rax int64_t arg2
call pony_become ; Sym.pony_become
mov rdi, r15 ; int64_t argl
mov esi, 1 intB4_t arg?
call pony_alloc_small ; sym.pony_alloc_small
mov rbp, rax
lea rax, [@xeee232ba]
mov gword [rbpl, rax
mov rdi, rbp 5 inté4_t argl
mov esi, ri3d inté4_t arg2
mov rdx, ri2 int64_t argl
mov rex, rbx int64_t arg4
call fcn. eeeasdsa
xor edi, edi ; int64_t argl
mov esi, 1 ; intB4_t arg?
call pony_alloc_msg ; sym.pony_alloc_msg
mov rbx, rax
mov gword [rax + @x1el, rbp
mov rdi, ri15 5 inté4_t argl
call pony_gc_send ; sym.pony_gc_send
mov rdi, ri15 inté4_t argl
mov rsi, rbp 5 inté4_t arg3
lea rdx, [@x0ee232be]
mov ecx, |
call pony_traceknown ; sym.pony_traceknown
mov rdi, r15 intB4_t argl
call pony_send_done ; sym.pony_send_done
mov rdi, r15 intB4_t argl
mov rsi, ri4 5 inté4_t arg2
mov rdx, rbx int4_t arg3
mov rcx, rbx ; inté4_t arg4
mov réd, 1 ; inté4_t args
call pony_sendv_single ; sym.pony_sendv_single
mov word [rspl, ex101
lea rax, [@x@ee23aas]
mov gword [var_sh], rax
mov agword [var_1ehl, @x1f
mov rdx, rsp int64_t arg3
xor edi, edi ; int64_t argl
xor esi, esi ; intB4_t arg2
call pony_start ; sym.pony_start
mov ebp, eax
test al, 1
jne ox7f59
[oxeaca7if4d]
lea rdi, str.Error:_couldn_t_start_runtime ; @x18620 ; const char #s
call puts ; sym.imp.puts ; int puts(const char #s)
[@x000a7f59]
mov rdi, r15 ; inté4_t argl
xor esi, esi ; int64_t arg2
call pony_become ; Sym.pony_become
call pony_get_exitcode ; sym.pony_get_exitcode
test bpl, 1
mov ecx, OxTIFfffff 5 =1
cmove eax, ecx
add rsp, #x18
pop rbx
pop rz2
pop ri
pop r4
pop ris
pop rbp
ret

Figure 8.1: Disassembly of the C main() procedure of a compiled Pony program

80

From this disassembly, we see the following runtime functions used:

pony_init
pony_ctx
pony_create
pony_become
pony_alloc_small
pony_alloc_msg
pony_gc_send

pony_traceknown

¥ o NN

pony_send_done

[
e

pony_sendv_single

—
—_

. pony_start

[
N

. pony_become

13. pony_get_exitcode

These can be loosely grouped together and the main program startup ex-

plained with more detail / context as follows:

1. Initialise the Pony runtime environment (runtime call 1: pony_init()).
This mainly sets up the schedulding-related information (e.g. determines

number of threads to use).

2. Create (i.e. allocate) the ‘main’ actor and switch the runtime context to
it (runtime calls 2-4. pony_ctx () simply fetches the global Pony context
struct and is used to get it into a variable for calling other runtime functions
with).

3. Create (i.e. allocate) the env / ‘environment’ struct, which is the constructor
argument for the Main actor. (This gets allocated on the main actor’s heap

and is what runtime call 5 (pony_alloc_small ()) represents.)

4. Create (i.e allocate) an initial bootstrap message for the Main actor (run-
time call 6). The message will have an implicit ‘id’ (‘type’) of 0, which cor-
responds to calling the compiled ‘dispatch’ function of the actor, and the
first value inside the message is set to be a pointer to the env struct. This
is how the env struct is ‘delivered’ to the Main actor, and, critically for the
object-capability side of the language, acts as the one sole point that the

root AmbientAuth capability is delivered in to the program.

81

5.

Step through all the message-based garbage collection-related steps for this

initial message and its contents (runtime calls 7, 8, and 9)

Put the message on the Main actor’s queue by sending the message to it
(10). This will implicitly cause the Main actor to be put on the global work

queue.

‘Start’ the runtime, which will create and start all the runtime scheduler
threads, then ‘join’ on all of them in series (i.e. block until they are all
complete). Each runtime thread continually tries to pop an actor from first
the global work queue, or failing that, its own local queue, and will then
process the popped actor’s message queue, until queiescence is detected
(i.e. all scheduler threads have empty queues - see [ClebschThesis, §A.12.3]

for more info on this).

At this point after all the scheduler threads have completed, clear the ac-
tor pointer (pony_become (NULL), then get and return the global-variable-

stored exit code from the runtime environment (runtime calls 12 and 13).

From here, it became clear that the key required components to port were

going to be:

Actor allocation (which uses the underlying pool allocator)

Pool allocator

Actor heaps

Message allocation (which again uses the underlying pool allocator)
Message queues, sending (queue push), and consumption (queue pop)

Scheduler, work queue(s)

The garbage collection components are arguably ‘required’ too, but were left

out of scope to focus on a minimum amount of work to get something running,

especially due to the complexities of the garbage collection process, and its strong

reliance on actor-to-actor communication (which could potentially be quite dif-

ferent if a model involving sel4-confined actors was approached).

Of all these components, the lowest-level one depended on most was obvi-

ously the pool allocator, which became the first component to try and port.

82

8.2 Step 1: base seL4 environment

Before even porting anything though, a base seL4 environment was required to
port into, and some basic sel.4 components that were likely going to be required
for using as part of the port.

Starting development of an sel4 system from scratch can be a daunting task
due to the number of userspace components required to get even a basic system
running. It is more common to start with CAmKES and set up an appropriate
set of existing components to build a static system out of. However CAmKES
itself comes with a lot of prescriptive initialization code and root task that sets
up the static system defined in the component assembly, and as this project was
potentially for investigating more dynamic interactions between sel4 capabilities,
it was decided to instead start from scratch with a custom root task.

seL4 development almost always involves the construction of userspace code
at the same time. As such, development is usually conducted through a ‘project’,
which is a collection of Git repositories including the kernel itself, which are as-
sembled together.

The sel4 release process includes the maintenance of several such ‘projects’

which are basically the available starting places for seL4 system development [67]:

. sel4test-manifest
. sel4bench-manifest
. camkes-manifest

. camkes-vm-examples-manifest

1

2

3

4

5. sel4webserver-manifest
6. seld-tutorials-manifest

7. rumprun-sel4-demoapps
8

. verification-manifest

The CAmKES manifests were excluded given the reasons mentioned above.
The seL4webserver projects runs a webserver inside a Linux VM inside a CAmKES
system, and thus were similarly excluded. The selL4 tutorials manifest mainly
includes project-generator code for setting up specific prescribed seL4 mechanism
tutorials, which are all highly tailored to specific simple examples for the purpose
of the tutorial at hand, so they were also excluded.

The rumprun app focuses specifically on supporting components of the NetBSD

kernel via the ‘rump kernel” approach, to allow for running unmodified NetBSD

83

drivers atop seL4 [65]. This project does not appear to have much active support
or use, and is overly complex for the task at hand, so was similarly excluded.

The verification manifest was also excluded as it exists primarily to support
working on the sel4 proofs with Isabelle/HOL.

This left the seL4test and seL4bench manifests as the main two projects to
consider?. They ultimately served as good reference points for starting a new
blank project, as whilst they each have a specific focus on bootstrapping environ-
ments for testing and benchmarking specifically, they both make use of similar
support code for establishing their base root tasks and running environments.

This includes for example:

+ the sel4runtime library, which makes a basic C environment available and
manages access to the seL4_BootInfo struct that the kernel passes to the

root task on startup (as shown back in Figure 1.7), and

« the libsel4platsupport and libplatsupport libraries, which can be
used to provide basic I/O facilities such as setting up access to the system
serial output device, and connecting C’s printf () to it to allow program

output to be seen when running the built OS project in the QEMU simulator.

There are a few other key support libraries that both projects make use of,
which were essential to reducing the amount of work required to perform straight-

forward memory and resource management on top seL4, including:

« the allocman untyped memory allocation manager
« the vka (Virtual Kernel Allocator) kernel object allocator library / interface

« the vspace library, to support virtual address space management

allocman provides careful automatic management of the recursive set of de-
pendencies involved in the problem of allocating and de-allocating different sel.4
kernel object resources from the base ‘Untyped’ memory capabilities / object type.
Untypeds must be split down into subsequent smaller Untyped capabilities (which
can be done by issuing the retype operation on an Untyped with target type of
Untyped), before finally being retyped into the desired final object. All the re-

typing operation results must be stored in unused CSpace slots, of which more

The ‘sos’ ‘simple operating system’ base project used for the UNSW Advanced Operating Sys-
tem subject was also consulted for reference: https://github. com/SEL4PR0J/AQS

84

https://github.com/SEL4PROJ/AOS

may need to be allocated beforehand. This is further complicated by the matter
that more CSpace slots have to be obtained by allocating a CNode object, which
itself must come from an Untyped object. All of these operations also require data
bookkeeping, which must be stored somewhere in physical memory - space for
which the library must also manage.

These kinds of allocation problems were ones that did not need to be solved in
any special way for the Pony implementation, so allocman was taken as an off-
the-shelf solution. A starter allocman instance can be bootstrapped from the un-
typeds described in the bootinfo, by using the bootstrap_use_current_simple
function, and passing it a static buffer to start using for bookkeeping data, which
can simply be declared as a static array in the rootserver program. (The kernel
will ensure this will be backed by mapped virtual memory as part of its own ini-
tialization process that sets up the root task.)

Once an allocman instance is set up, it can be used through the vka inter-
face which allows for making arbitrary kernel object allocation requests, such as
asking for a new thread, endpoint, or pagetable object.

This all finally leads up to the vspace library, which provides higher-level
facilities for managing a virtual address space, that is ultimately controlled by
VSpace capabilities under the hood. libsel4utils provides the sel4utils_
bootstrap_vspace_with_bootinfo function, which takes a vka instance and
the bootinfo struct, and sets up a vspace instance pre-configured with the current
state of the virtual address space, as per the details of the bootinfo struct.

With a vspace instance set up, all the pieces are in place to support filling
more of the root task’s virtual address space out with mapped physical mem-
ory. This includes the ability to map physical memory addresses that are actually
control registers for devices. Consequently, at this point the the platsupport_
serial_setup_simple function can be invoked, which will find the physical
memory addresses associated with the system serial device for the platform the
kernel has been built for, map them in to the current address space, and then up-
date some static function pointers such that subsequent calls to printf will use
the serial device for character output.

Once a base project and root task with all these libraries was set up and con-
figured, all the tools and functionalities required for the port were in place and

the porting work itself could begin.

85

8.3 Step 2: porting the allocator

With a base seL4 enviornment established, the task of porting the Pony pool mem-
ory allocator over came next, as it had been identified as the component that made
sense to try and port first as discussed in section 8.1.

Analysis of the allocator code and the descriptive writeup of it in [ClebschThe-
sis, §A.3] revealed many layers of places where allocated memory can ultimately
come from when a runtime call for allocation is made. A breakdown of these
layers is shown in Figure 8.2.

A key dependency noted at this point was that several core datastructures
within the allocator are expected to be local per scheduler thread, and that this is
currently implemented by the variables in question being declared as C thread-
local-storage variables. Thread-local-storage is quite a complicated feature [24]
that relies on co-operation between both the C compiler, and the operating sys-
tem’s process loading procedures and dynamic linker, via the ELF format that
compiled code is ultimately stored within. If a new thread is started in the same
address space, a spot in that address space must be reserved / allocated for that
new thread’s thread-local storage, the “image” for the TLS copied in from the
program ELF, and the thread must be configred to use this new storage area. The
sel4runtime library provides support for some of these operations, and ensures
that the initial thread in the root task will have correctly-functioning thread-local
variables, but for additional threads, library functions must be invoked manually
as part of whatever threading model is established as part of the particular seL4

system being built.

Key Observation 4 1ibponyrt relies on C thread-local storage for many of its
key datastructures, which does not necessarily come for free on seL4, and must be
carefully considered and managed depending on the process-loading, threading, and

address space models designed for the target seL4 system being put together.

3An example of how thread-local storage can be managed using sel4runtime’s functions
can be found within the benchmark_spawn_process function in https://github.com/selL4/
seldbench/blob/12.1.x-compatible/libsel4benchsupport/src/support.c#L254 (line
#254 at time of writing)

86

https://github.com/seL4/sel4bench/blob/12.1.x-compatible/libsel4benchsupport/src/support.c#L254
https://github.com/seL4/sel4bench/blob/12.1.x-compatible/libsel4benchsupport/src/support.c#L254

1. A thread-local list of previously-freed size-classed allocations is first
consulted.

This will be populated throughout a program’s execution whenever mem-
ory is freed by the runtime.

If nothing can be found here...

2. A global list of previously-freed size-classed allocations is consulted.

This list gets populated whenever a certain threshold of thread-local
allocation-freeing accumulates in one thread. Operations on the list are
made using atomic lock-free operations (e.g. compare-and-swap loop for
list push).

If this list is empty or has nothing large enough on it...

3. (a) For sub-1kB allocations, a thread-local (1kB) block of contiguous
memory is consulted

If the allocation fits within the space available on this block, that space
is deducted from the block and used for the allocation. Otherwise (or
if there was no block present), a new block is fetched by making a
recursive call into the pool allocator for 1kB, and space on this block
is used instead.

(b) For >1kB allocations, a thread-local list of previously-freed or un-
used larger blocks of memory is consulted.
If there is room on any of these, that space is taken and used for the
allocation.

Finally, if none of the above options were able to supply space for the re-
quested allocation...

4. A large new ‘block’ is created by asking the underlying operating sys-
tem for more pages of virtual address space.

(a) In cases of very large allocations (>128MB, a tuneable parameter), the
whole set of returned pages is used for the allocation.

(b) Otherwise, 128MB (or equivalent tuneable size parameter) of space
is asked for, the allocation is deducted from this, and the remaining
space is added into the thread-local list of free blocks mentioned in
item 3b.

Figure 8.2: Description of the various levels of memory space sources used in the
Pony pool allocator

Adapted from code in mem/pool.c in the libponyrt folder of the ponyc repo
[62]

87

Another dependency revealed at this point is the Pony codebase’s use of C11
atomics, such as the atomic_store_explicit, atomic_load_explicit, and
atomic_exchange_explicit functions, which underly all of the thread-safe lock-
free datastructure operations used by the runtime.

The libponyrt code ultimately relies on the <stdatomic.h> file for these
atomics. This file comes shipped as part of a compiler itself*. However all seL.4
project invoke GCC with the -nostdinc flag®, which excludes all system-level
header files on the compilation host system from the set of paths available for
including header files from. Explicitly re-including the relevant directory did not

seem to work®, so symlinking the file into the project was done as a workaround.

‘stdatomic.h was found in directory /usr/lib/gcc/x86_64-1inux-gnu/10/include/
stdatomic.h within the seL4 docker build environment

>The root source of this flag is the add_default_compilation_options CMake macro
in helpers/environment_flags.cmake from the cmake-tool selL4 repo. This helper gets
called by musllibc_set_environment_flags, which is called by musllibc_setup_build_
environment_with_sel4runtime, the top-level command used to bring the seL4-friendly musl
libc library into build scope for compiling C code for seL4 environments.

This appears to be an open issue for CMake projects: https://gitlab.kitware.com/
cmake/cmake/-/issues/19227

88

https://gitlab.kitware.com/cmake/cmake/-/issues/19227
https://gitlab.kitware.com/cmake/cmake/-/issues/19227

The final ‘dependency’ to take care of was the allocator’s requesting of more
virual memory.

Ultimately, when the allocator code is first invoked at runtime, all of the levels
of memory space sources described in Figure 8.2 are empty, as no existing memory
has been freed from prior allocation. This means that the all the levels of checks
will cascade down into an initial ‘call to the underlying operating system for more
pages of memory’. Inside libponyrt, this is implemented within the function
ponyint_virt_alloc. The existing version of this function is shown below in

Figure 8.3.

89

#ifdef PLATFORM_IS_POSIX_BASED
#include <sys/mman.h>
#endif

#if defined (PLATFORM_IS_MACOSX)
#include <mach/vm_statistics.h>
#endif

void* ponyint_virt_alloc(size_t bytes)
{

void* p;

bool ok = true;

#if defined (PLATFORM_IS_WINDOWS)
p = VirtualAlloc(NULL, bytes, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
if (p == NULL)
ok = false;
#elif defined (PLATFORM_IS_POSIX_BASED)
#if defined (PLATFORM_IS_LINUX)
p = mmap(0, bytes, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE, -1, 0);
#elif defined (PLATFORM_IS_MACOSX)
p = mmap(0, bytes, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANON, -1, 0);
#elif defined (PLATFORM_IS_DRAGONFLY)
p = mmap(0, bytes, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANON, -1, 0);
#elif defined (PLATFORM_IS_OPENBSD)
p = mmap(0, bytes, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANON, -1, 0);
#elif defined (PLATFORM_IS_BSD)
#ifndef MAP_ALIGNED_SUPER
#define MAP_ALIGNED_SUPER 0
#endif
p = mmap(0, bytes, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANON | MAP_ALIGNED_SUPER, -1, 0);
#endif
if (p == MAP_FAILED)
ok = false;
#endif

if (tok)

{
perror("out of memory: ");
abort();

}

return p;

}

Figure 8.3: Existing ponyint_virt_alloc implementation from the release Pony
runtime
Taken from libponyrt in the ponyc repo [62]

90

However, obviously this will not work on sel4, as it does not provide mmap as
a syscall (see section 1.2). With the vspace interface available from the root task
environment established in section 8.2, the ponyint_virt_alloc function was

thus altered to the one shown in Figure 8.4.

91

#include <vspace/vspace.h>
#include <utils/page.h>

/*
sel4 allocation code based on dynmamic morecore in
libselimuslcsys/src/sys_morecore.c

Globals need to be defined somewhere (probably in the
main function of your app. And setup something like

sel{pony_this_vspace = Huspace;
*/
vspace_t *seldpony_this_vspace = NULL;

void* ponyint_virt_alloc(size_t bytes)

void* p;
bool ok = true;

#ifdef PONYSEL4ALLOC_USE_LARGE_PAGES
uint32_t pages = BYTES_TO_SIZE_BITS_PAGES(bytes, selL4_LargePageBits);
size_t paged_bytes = ((size_t)pages) * BIT(seL4_LargePageBits);
fprintf(stderr, "Pulling %d new large pages into vspace (0x%xB from 0x%xB
- request)\n", pages, paged_bytes, bytes);
if (paged_bytes != bytes) {
fprintf(stderr, "alloc spillover of %d bytes\n", (paged_bytes - bytes));

}
p = vspace_new_pages(sel4pony_this_vspace, seL4_AllRights, pages,
— sel4_LargePageBits);
#else
uint32_t pages = BYTES_TO_4K_PAGES(bytes);
fprintf(stderr, "Pulling J%d new pages (%d) into vspace\n", pages, bytes);
p = vspace_new_pages(sel4pony_this_vspace, seL4_AllRights, pages, selL4_PageBits);
#endif
if(p == NULL)
ok = false;

if (tok)

{
fprintf(stderr, "0S alloc failed (vspace_new_pages returned NULL)\n");
abort();

}

return p;

Figure 8.4: ponyint_virt_alloc implementation developed for the seL4 envi-
ronment

92

At this point, the allocator code successfully compiled and could be tested
within the main () function of the root task (after all the environment setup de-
scribed in section 8.2). Initially, when testing with ponyint_virt_alloc config-
ured to use default 4kb pages on a 512mb virtual machine, and to ask the vspace
library for 2MB at a time (512 4kb pages), the allocator would fail when hitting
the third call to vspace_new_pages. This is probably due to the large amount
of capability and bookkeeping overhead for allocating so many pages at once.
However, switching to use x86 large pages for the vspace requests fixed this and
allowed for around 500mb of memory to be allocated before receiving the same

out-of-space error.

93

8.4 Step 3: porting the SPMC messages queues

With a functioning pool allocator, Pony message allocation now worked too, so
the next step was to port over the SPMC (single-producer multiple-consumer)
message queues used for the core Pony actor-to-actor message passing function-
ality.

With C11 atomics already out of the way from porting the pool allocator, this
next step was relatively painless, and the ponyint_actor_messageq_push and
ponyint_actor_messageq_pop funtions were successfully ported and tested within
the seL4 environment.

At this stage, all of the minimum components required for some sort of func-
tional actor runtime except the work-stealing scheduling were in place. A sim-
ple test C program, similar in style to the ping-pong 'mailbox’ Pony program of
Listing 1, was constructed to test all the moving parts, which is shown below in
Listing 3. Note that due to the lack of work-stealing, the actor message queues
must be explicitly handled multiple times, to ensure that all messages produced

by prior runs are handled.

94

typedef struct pony_ctx_t pony_ctx_t;
typedef struct pony_simpleactor_t pony_simpleactor_t;

/** Dispatch function.
*
* Each actor has a dispatch function that is invoked when the actor handles
* a message.
*/

typedef void (*pony_dispatch_fn) (pony_ctx_t* ctx, pony_simpleactor_t* actor,
pony_msg_t* m);

typedef struct pony_faketype_t {
uint32_t id;
char* name;
pony_dispatch_fn dispatch;

} pony_faketype_t;

struct pony_simpleactor_t {
pony_faketype_t* type;
messageq_t q;
// PONY_ATOMIC(uint8_t) flags;

// keep things accessed by other actors on a separate cache line
// alignas(64) heap_t heap; // 52/104 bytes
// ge_t ge; // 48/88 bytes

};

struct pony_ctx_t {};

enum MainMethods {
M_helloworlddebug,
M_main,
M_pong

};

typedef struct main__main__msg_t {
pony_msg_t msghdr;
// TODO-ACTORALLOC: this actor arg should be removed and the Ponger actor
// should be allocated by the main actor itself
pony_simpleactor_t* pongactor;
uint32_t pingc;
} main__main__msg_t;
typedef struct main__pong__msg_t {
pony_msg_t msghdr;
} main__pong__msg_t;

enum PongerMethods {
P_helloworlddebug,
P_ping

1

typedef struct ponger__ping_ _msg_t {
pony_msg_t msghdr;
pony_simpleactor_t* pongdest;
uint32_t pongc;

} ponger__ping__msg_t;

95

void Main_dispatch(pony_ctx_t* ctx, pony_simpleactor_t* a, pony_msg_t* m) {
switch(m->id) {

case M_helloworlddebug:
fprintf (stderr, "Actor<Main> @ %x says Hello World!!\n", a);
break;
case M_main:
fprintf (stderr, "Actor<Main>.main() @ %x \n", a);
// allocate / obtain ref to ponger
pony_simpleactor_t* ponger_ref = ((main__main__msg_t*)m)->pongactor;
// send ping messages
for(int i = 0; i < 5; i++) {
fprintf (stderr, "Actor<Main>.main() @ %x - pushing ping msg #%d\n",
- a, i);
ponger__ping__msg_t* m =
— (ponger__ping__msg_t*)pony_alloc_msg(POOL_INDEX(sizeof (ponger__ping__msg_t)),
~ P_ping);
m->pongc = 2
m->pongdest a;
ponyint_actor_messageq_push_single(
4ponger_ref->q,
(pony_msg_t*)m, (pony_msg_t*)m

)3
}
break;
case M_pong:
fprintf (stderr, "Actor<Main>.pong() @ %x - pong!\n", a);

break;
default:
fprintf(stderr, "Main_dispatch @ %x: unknown message type %d\n", a,
o m->id);
break;
}
}

void Ponger_dispatch(pony_ctx_t* ctx, pony_simpleactor_t* a, pony_msg_t* m) {
switch(m->id) {
case P_helloworlddebug:
fprintf (stderr, "Actor<Ponger> @ %x says Hello World!!\n", a);
break;
case P_ping:
fprintf (stderr, "Actor<Ponger>.ping() @ %x\n", a);
// Grab ponger ref from msg
pony_simpleactor_t* pongdest_ref = ((ponger__ping__msg_t*)m)->pongdest;
for (int i = 0; i < ((ponger__ping__msg_t*)m)->pongc; i++) {
fprintf (stderr, "Actor<Ponger>.ping() @ %x - pushing pong msg
o #%d\n", a, i);
main__pong__msg_t* m =
(main__pong__msg_t*)pony_alloc_msg(POOL_INDEX(sizeof (main__pong__msg_t)),
M_pong) ;

¢

{

ponyint_actor_messageq_push_single(
&pongdest_ref->q,
(pony_msg_t*)m, (pony_msg_t*)m

);

}

break;

default:
fprintf (stderr, "Ponger_dispatch @ %x: unknown message type %d\n", a,
o m->id);
break;
}

96

static pony_faketype_t mainactor_t = {
.id=1,
.name="Main",
.dispatch=Main_dispatch

};

static pony_faketype_t pongeractor_t = {
.id=1,
.name="Ponger",
.dispatch=Ponger_dispatch

s

void handle_msgq(pony_simpleactor_t* actor) {
size_t batch = 100/#PONY_SCHED_BATCH*/;

pony_msg_t* msg;
size_t app = 0;

// If we have been scheduled, the head will not be marked as empty.
pony_msg_t* head = atomic_load_explicit(&actor->q.head, memory_order_relaxed) ;

while((msg = ponyint_actor_messageq_pop(&actor->q)) !'= NULL) {
printf("got msg - id: %d\n", msg->id);
actor->type->dispatch(NULL, actor, msg);
appt+;
// Stop handling a batch if we reach the head we found when we were
// scheduled.
if (msg == head)
break;

}

void test_seldpony_simpleactor(uint32_t pingc) {
pony_simpleactor_t actor_main = {
.type = &mainactor_t
}
pony_simpleactor_t actor_ponger = {
.type = &pongeractor_t
}
ponyint_messageq_init(&actor_main.q);
ponyint_messageq_init(&actor_ponger.q) ;

main__main__msg_t* main__main__msg = (main__main__msg_t*)pony_alloc_msg(0,
< M_main);
// TODO-ACTORALLOC: this actor should be allocated by the main actor itself
// For mow, the pong actor is a static alloc passed as an argument to main()
main__main__msg->pongactor = &actor_ponger;
main__main__msg->pingc = pingc;
ponyint_actor_messageq_push(
Y%actor_main.q,
(pony_msg_t*)main__main__msg,
(pony_msg_t*)main__main__msg
);
// and now.... dispatch! dispatch?
handle_msgq(&actor_main) ;
// TODO: work-stealing
handle_msgq(&actor_ponger) ;
handle_msgq(&actor_main) ;

Listing 3: ’simpleactor’ test C program for demonstrating the functional Pony
allocator and message queues.

97

8.5 Future steps: scheduling, actor heaps, garbage col-

lection

For future work, the next steps to investigate porting would be the work-stealing
scheduler, with its MPSC (multiple-producer single-consumer) work queues, and
some form of runtime threads, each of which would require appropriate thread-
local storage. As per the analysis of the main() procedure in section 8.1, the
threads will need to be able to be ‘joined’, which is a POSIX thread functinoality
that seL4 threads do not provide on their own, so some other sort of synchroni-
sation method (likely via a Notification object) would be required.

Whilst real Pony actor allocation should be mostly achievable with the cur-
rent port, due to the main dependency for their allocation being simply the pool
allocator, actors themselves have their own heaps, which there is assorted further
code that needs to be ported for the support for allocating objects from them.

Additionally, there are many components of the garbage-collection subsystem
that would need to be ported as well to support real Pony programs, as even the

program initialisation shown in Figure 8.1 makes use of it.

98

Chapter 9

Conclusions

Pony is a complex language, built very strongly around its actor execution model,
and atop many layers of assumptions - causal message passing, single address
spaces, and POSIX-compatible runtime threads. This has ultimately made it some-
what restrictive to design mappings for seL4 with.

The seL4 primitives that its capabilities are used for are also very minimalist
and low-level, and the majority of them either control or represent concepts well
below the level of what a memory-safe programming language usually reasons
about, or come with particular invocation concerns (i.e. blocking implications)
surrounding the seL4 threading and IPC model, which is quite specific to seL4 /
L4 microkernels. Examples of the low-level concepts include physical memory
(not virtual memory), and the management / fine alteration of virtual address
spaces, something usually taken care of by the operating system, below the level
that the programming language is targeting. On the threading and IPC front, seL4
threads are somewhat particular, as opposed to what threads are more generally
understood to represent on most operating systems (i.e. POSIX threads). This
makes design options surrounding their language-level representation come with
many strings attached - such as the inability for non-blocking send to be used
reliably on seL4 Endpoints (as per Key Observation 2).

This ultimately made finding any natural mapping of Pony onto seL4’s capa-
bilities difficult, due to Pony’s general design reliance on assuming non-blocking
behaviour, and a ‘balanced’ thread environment where work in the language is
handled and performed in the same way regardless of which core code is being

executed on. This is somewhat at odds with seL4, where the core you are on can

99

matter more!.

seL4 is also more generally not yet really built for large multi-core systems?
where the concurrency and parallelism in Pony can really be exploited. In regards

to multicore systems, the seL4 website currently states® that:

The multicore kernel uses a big-lock approach, which makes sense for
tightly-coupled cores that share an L2 cache [50]. It is not meant to
scale to many cores, where instead multikernel is the right approach
(running separate kernel image on each cluster of cores sharing a
cache). This “clustered multikernel” configuration is presently not

supported, though..

This "clustered multikernel" approach has been covered in [68], but there are
complicated problems posed for maintaining the verification proofs that underly
seL4’s world-leading security assurances. The Barrelfish operating system, which
pioneered the multikernel model [9], and which, as mentioned, is uses a capability
system that is in fact based off of seL4, could be worth investigating a mapping of
Pony for too. There are complicated distributed capability problems involved in
the multikernel model, which the Barrelfish project has investigated [57, Chapter
5], but have been outside the scope of any analysis of a language mapping in this
thesis.

Despite being an object-capability language that can achieve strong logical
separation between units of code built within a single project, Pony also lacks
support for features found in other ocap languages, such as dynamic code exe-
cution / evaluation, and any of the more explicitly confined execution contexts
provided by the ‘vat’ models that other distributed ocap programming environ-
ments espouse. More generally, whilst it follows object-capability discipline, and
is a language that can provide high levels of performant concurrency, it does not
come with any remote or explicit distributed object model such as the NearRefs
and FarRefs of E. Even the proposed distributed model of Pony [11] addressed in

section 5.8 again assumes an automatically-balanced exection model, where the

'Tt is worth noting that this thesis was conducted on the ‘mainline’ seL4, and not the newer
MCS ‘mixed-criticality systems’ version, which introduces the concept of ‘passive threads’ that are
not pinned to any one particular CPU core. This could be worth further investigation - however
the MCS model also comes with time scheduling budgets that could conflict with Pony’s balanced
thread execution model (and in fact was not considered initially in this project for these reasons)

“The thesis that adopted seL4’s capability model into Barrelfish [49] even refers to it as ‘a single-
core capability system’

3See https://docs.seld.systems/projects/seld/frequently-asked-questions.
html#does-sel4-support-multicore

100

https://docs.sel4.systems/projects/sel4/frequently-asked-questions.html#does-sel4-support-multicore
https://docs.sel4.systems/projects/sel4/frequently-asked-questions.html#does-sel4-support-multicore

work-stealing algorithm can cause actors to be migrated at any point in time, and
thus the model through which local and remote communication is presented is
aimed to be kept uniform. Something with more explicit management of remote
objects in confined compartments might map better onto seL.4’s model of confined
protection domains.

Regardless, if a full port of the Pony runtime to a singular seL4 protection
domain can be achieved, there could potentially still be interesting future work to
investigate for working with higher-level capabilities set up by other existing seL.4
project infrastructure. Currently, it is not possible to start a whole Pony program
with a restricted subset of capabilities - the Main actor will always get passed
the AmbientAuth capability, which can be downtyped into any of the various
authorities the language has been designed around (as highlighted in section 5.5).
However, it would not be too difficult to alter this such that more granular, specific
subsets of capability types could be provided as part of some API via the root
env argument, given that the env struct is already set up by generated machine
code from LLVM that Pony source code cannot see or alter. On an seL4 CAmKES
system, these could be set up to represent access to various CAmKES component
connectors, backed by capability addresses in the env struct that the program
could be explicitly set up with.

In regards to other language options, there is a distinct lack of ‘systems’ ocap
languages in the options found from the survey that have the high performance
most likely to be saught for the design of systems built with seL4. C++ is a
common choice for high performance programming, but is notoriously memory-
unsafe - however an ocap ‘discpline’ could perhaps be teased out of a subset of it,
leveraging its private constructors and model for delegated ‘friendship’ with the
friend declaration. Further research on something within Rust could be useful
future work worth pursuing, as it is likely to be able to give the high perfor-
mance guarantees required, whilst also still being memory-safe when used with-
out unsafe blocks.

Additionally, the issue of ambient authority for memory allocation as raised in
Key Observation 3 from section 6.7 is an interesting result of the research. This
could be worth re-examining within the context of object-capability languages,
especially in embedded development contexts where smaller amounts of memory

lead to memory management being a more important issue.

101

Bibliography

[1]

(2]

(3]

[4]

[5]

(6]

[7]

(8]

Agoric Inc. endojs/endo: Endo is a distributed secure JavaScript sandbox,
based on SES. https://github.com/endojs/endo, . Github Repository.

Agoric Inc. Jessica - Jessie (secure distributed Javascript) Compiler Architec-

ture. https://github.com/agoric-labs/jessica/,. Github Repository.

Agoric Inc. Jessie, simple universal safe mobile code. https://github.

com/endojs/Jessie, . Github Repository.

B. Anderson, L. Bergstrom, M. Goregaokar, J. Matthews, K. McAllister,
J. Moffitt, and S. Sapin. Engineering the Servo Web Browser Engine Using
Rust. In Proceedings of the 38th International Conference on Software Engi-
neering Companion, ICSE 16, page 81-89, New York, NY, USA, 2016. Associ-
ation for Computing Machinery. ISBN 9781450342056. doi: 10.1145/2889160.
2889229. URL https://doi.org/10.1145/2889160.2889229.

Anthony Pesch. inolen/quakejs. https://github.com/inolen/quakejs,
2014. GitHub Repository, live demo available at http://www.quakejs.

com/.

Auxon Corporation. selfe-sys - A generated thin wrapper around lib-
sel4.a, with supporting subcrates. https://github.com/auxoncorp/
selfe-sys, 2016. GitHub repository.

Auxon Corporation. ferros - A Rust library to add extra assurances to seL4
development. https://github.com/auxoncorp/ferros, 2019. GitHub

repository.

A. Baumann. Inter-dispatcher communication in Barrelfish. Technical
Note 011, ETH Zurich, December 2011. URL https://barrelfish.org/
publications/TN-011-IDC.pdf.

102

https://github.com/endojs/endo
https://github.com/agoric-labs/jessica/
https://github.com/endojs/Jessie
https://github.com/endojs/Jessie
https://doi.org/10.1145/2889160.2889229
https://github.com/inolen/quakejs
http://www.quakejs.com/
http://www.quakejs.com/
https://github.com/auxoncorp/selfe-sys
https://github.com/auxoncorp/selfe-sys
https://github.com/auxoncorp/ferros
https://barrelfish.org/publications/TN-011-IDC.pdf
https://barrelfish.org/publications/TN-011-IDC.pdf

[9]

[10]

[11]

[13]

[14]

[15]

A.Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter, T. Roscoe,
A. Schiipbach, and A. Singhania. The Multikernel: A New OS Architec-
ture for Scalable Multicore Systems. In Proceedings of the ACM SIGOPS
22nd Symposium on Operating Systems Principles, SOSP *09, page 29-44,
New York, NY, USA, 2009. Association for Computing Machinery. ISBN
9781605587523. doi: 10.1145/1629575.1629579. URL https://doi.org/10.
1145/1629575.1629579.

S. Biggs, D. Lee, and G. Heiser. The jury is in: Monolithic os design is flawed:
Microkernel-based designs improve security. In Proceedings of the 9th Asia-
Pacific Workshop on Systems, APSys ’18, New York, NY, USA, 2018. Associa-
tion for Computing Machinery. ISBN 9781450360067. doi: 10.1145/3265723.
3265733. URL https://doi.org/10.1145/3265723.3265733.

S. Blessing. A String of Ponies: Transparent Distributed Program-
ming with Actors. Available online at https://www.ponylang.io/
media/papers/a_string_of_ponies.pdf orhttps://www.doc.ic.ac.
uk/~scbl2/publications/s.blessing.pdf, 2013. Masters Thesis.

A. Boyton, J. Andronick, C. Bannister, M. Fernandez, X. Gao, D. Greenaway,
G. Klein, C. Lewis, and T. Sewell. Formally Verified System Initialisation.
In Lindsay Groves, Jing Sun, editor, Proceedings of the 15th International
Conference on Formal Engineering Methods, pages 70-85, Queenstown, New
Zealand, Oct. 2013. Springer. doi: 10.1007/978-3-642-41202-8_6.

G. Bracha, P. Ahe, V. Bykov, R. Macnak, E. Miranda, and B. Maddox. The
Newspeak Programming Language. https://newspeaklanguage.org/.
Website.

Bytecode Alliance. cap-std - Capability-based version of the Rust stan-
dard library . https://github.com/bytecodealliance/cap-std, 2020.
GitHub repository.

Bytecode Alliance. WASI (Embedding in Rust example) - Wasm-
time. https://docs.wasmtime.dev/examples-rust-wasi.html,
2020. Example page from Wasmtime documentation, Accessed:

2022-11-08, Last update: 2021-06-04 (see documentation source at
https://github.com/bytecodealliance/wasmtime/blob/main/

docs/examples-rust-wasi.md).

103

https://doi.org/10.1145/1629575.1629579
https://doi.org/10.1145/1629575.1629579
https://doi.org/10.1145/3265723.3265733
https://www.ponylang.io/media/papers/a_string_of_ponies.pdf
https://www.ponylang.io/media/papers/a_string_of_ponies.pdf
https://www.doc.ic.ac.uk/~scb12/publications/s.blessing.pdf
https://www.doc.ic.ac.uk/~scb12/publications/s.blessing.pdf
https://newspeaklanguage.org/
https://github.com/bytecodealliance/cap-std
https://docs.wasmtime.dev/examples-rust-wasi.html
https://github.com/bytecodealliance/wasmtime/blob/main/docs/examples-rust-wasi.md
https://github.com/bytecodealliance/wasmtime/blob/main/docs/examples-rust-wasi.md

[16]

[17]

[19]

[20]

D. Charousset, R. Hiesgen, and T. C. Schmidt. Revisiting Actor Programming
in C++. Computer Languages, Systems & Structures, 45(C):105-131, apr 2016.
ISSN 1477-8424. doi: 10.1016/j.c1.2016.01.002. URL https://doi.org/10.
1016/j.¢1.2016.01.002.

S. Clebsch. ’Pony’: co-designing a type system and a runtime. PhD the-
sis, Imperial College London, 2017. Available online at https://spiral.
imperial.ac.uk/handle/10044/1/65656.

S. Clebsch and S. Drossopoulou. Fully Concurrent Garbage Collection of
Actors on Many-Core Machines. In Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented Programming Systems Languages
& Applications, OOPSLA 13, page 553-570, New York, NY, USA, 2013. As-
sociation for Computing Machinery. ISBN 9781450323741. doi: 10.1145/
2509136.2509557. URL https://doi.org/10.1145/2509136.2509557.

S. Clebsch, S. Drossopoulou, S. Blessing, and A. McNeil. Deny Capabil-
ities for Safe, Fast Actors. In Proceedings of the 5th International Work-
shop on Programming Based on Actors, Agents, and Decentralized Control,
AGERE! 2015, page 1-12, New York, NY, USA, 2015. Association for Com-
puting Machinery. ISBN 9781450339018. doi: 10.1145/2824815.2824816. URL
https://doi.org/10.1145/2824815.2824816.

S. Clebsch, J. Franco, S. Drossopoulou, A. M. Yang, T. Wrigstad, and J. Vitek.
Orca: GC and Type System Co-Design for Actor Languages. Proc. ACM
Program. Lang., 1(OOPSLA), oct 2017. doi: 10.1145/3133896. URL https:
//doi.org/10.1145/3133896.

P.-E. Dagand, A. Baumann, and T. Roscoe. Filet-o-Fish: Practical and De-
pendable Domain-Specific Languages for OS Development. In Proceedings
of the Fifth Workshop on Programming Languages and Operating Systems,
PLOS ’09, New York, NY, USA, 2009. Association for Computing Machin-
ery. ISBN 9781605588445. doi: 10.1145/1745438.1745446. URL https:
//doi .org/10.1145/1745438 . 1745446.

[22] J. B. Dennis and E. C. Van Horn. Programming semantics for multipro-

grammed computations. Commun. ACM, 9(3):143-155, mar 1966. ISSN
0001-0782. doi: 10.1145/365230.365252. URL https://doi.org/10.1145/
365230.365252.

104

https://doi.org/10.1016/j.cl.2016.01.002
https://doi.org/10.1016/j.cl.2016.01.002
https://spiral.imperial.ac.uk/handle/10044/1/65656
https://spiral.imperial.ac.uk/handle/10044/1/65656
https://doi.org/10.1145/2509136.2509557
https://doi.org/10.1145/2824815.2824816
https://doi.org/10.1145/3133896
https://doi.org/10.1145/3133896
https://doi.org/10.1145/1745438.1745446
https://doi.org/10.1145/1745438.1745446
https://doi.org/10.1145/365230.365252
https://doi.org/10.1145/365230.365252

[23] R. Developers. Robigalia. https://rbg.systems/. Website, Last updated:
December 17 2021, accessed: November 26 2022.

[24] U. Drepper. ELF Handling For Thread-Local Storage. Technical report, Au-
gust 2013. URL http://people.redhat.com/drepper/tls.pdf. Version
0.21. Also available at https://www.akkadia.org/drepper/tls.pdf.

[25] M. Fahndrich, M. Aiken, C. Hawblitzel, O. Hodson, G. Hunt, J. Larus, and
S. Levi. Language Support for Fast and Reliable Message-based Commu-
nication in Singularity OS. In Proceedings of the EuroSys 2006 Conference,
pages 177-190. Association for Computing Machinery, Inc., April 2006.
URL https://www.microsoft.com/en-us/research/publication/

language-support-for-fast-and-reliable-message-based-communication-in-singularit

[26] M. Fernandez, G. Klein, I. Kuz, and T. Murray. CAmKES Formalisation of a
Component Platform. Technical report, NICTA and UNSW, Australia, Nov.
2013.

[27] K. Fernandez-Reyes, 1. O. Gariano,]. Noble, E. Greenwood-Thessman,
M. Homer, and T. Wrigstad. Dala: a simple capability-based dynamic lan-
guage design for data race-freedom. In Proceedings of the 2021 ACM SIGPLAN
International Symposium on New Ideas, New Paradigms, and Reflections on

Programming and Software, pages 1-17, 2021.

[28] N. Feske. Introducing Genode. https://genode-labs.com/
publications/nfeske-genode-fosdem-2012-02.pdf. Slides, FOS-
DEM 2012, Brussels, February 2012.

[29] M. Flatt and PLT. Reference: Racket. Technical Report PLT-TR-2010-1, PLT
Design Inc., 2010. https://racket-lang.org/trl/.

[30] Genode Labs. Genode Operating System Framework - About Genode.
https://genode.org/about/index. Website Page, accessed: November

27 2022.
[31] Gernot Heiser. How to (and how not to) wuse sel4
IPC. https://microkerneldude.org/2019/03/07/

how-to-and-how-not-to-use-seld-ipc/, March 2019. Blog Post.

105

https://rbg.systems/
http://people.redhat.com/drepper/tls.pdf
https://www.akkadia.org/drepper/tls.pdf
https://www.microsoft.com/en-us/research/publication/language-support-for-fast-and-reliable-message-based-communication-in-singularity-os/
https://www.microsoft.com/en-us/research/publication/language-support-for-fast-and-reliable-message-based-communication-in-singularity-os/
https://genode-labs.com/publications/nfeske-genode-fosdem-2012-02.pdf
https://genode-labs.com/publications/nfeske-genode-fosdem-2012-02.pdf
https://racket-lang.org/tr1/
https://genode.org/about/index
https://microkerneldude.org/2019/03/07/how-to-and-how-not-to-use-sel4-ipc/
https://microkerneldude.org/2019/03/07/how-to-and-how-not-to-use-sel4-ipc/

[32]

[33]

[34]

[35]

[36]

[37]

Google Inc. Protocol Buffers - Google Developer Documentation. https://
developers.google.com/protocol-buffers/. Documentation Website,
accessed: November 20 2022.

A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman, D. Gohman,
L. Wagner, A. Zakai, and J. Bastien. Bringing the Web up to Speed with
WebAssembly. In Proceedings of the 38th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI 2017, page 185-200,
New York, NY, USA, 2017. Association for Computing Machinery. ISBN
9781450349888. doi: 10.1145/3062341.3062363. URL https://doi.org/10.
1145/3062341.3062363.

N. Hardy. The confused deputy: (or why capabilities might have been in-
vented). SIGOPS Oper. Syst. Rev., 22(4):36-38, oct 1988. ISSN 0163-5980. doi:
10.1145/54289.871709. URL https://doi.org/10.1145/54289.871709.

G. Heiser, L. Parker, P. Chubb, I. Velickovic, and B. Leslie. Can we put the
"S" into IoT? In IEEE World Forum on Internet of Things, Yokohama, JP, Nov.
2022.

G. Hunt and J. Larus. Singularity: Rethinking the Software Stack.
ACM SIGOPS Operating Systems Review, 41(2):37-49, April 2007. URL
https://www.microsoft.com/en-us/research/publication/

singularity-rethinking-the-software-stack/.

G. Hunt, J. Larus, M. Abadi, M. Aiken, P. Barham, M. Fahndrich, C. Haw-
blitzel, O. Hodson, S. Levi, N. Murphy, B. Steensgaard, D. Tarditi,
T. Wobber, and B. Zill. An Overview of the Singularity Project.
Technical Report MSR-TR-2005-135, Microsoft Research, October 2005.
URL https://www.microsoft.com/en-us/research/publication/

an-overview-of-the-singularity-project/.

Kevin Reid. kpreid/e-on-cl: E language implementation targeting Common

Lisp. https://github.com/kpreid/e-on-cl. Github Repository.

G. Klein, J. Andronick, K. Elphinstone, T. Murray, T. Sewell, R. Kolanski, and
G. Heiser. Comprehensive formal verification of an OS microkernel. ACM
Trans. Comput. Syst., 32(1), feb 2014. ISSN 0734-2071. doi: 10.1145/2560537.
URL https://doi.org/10.1145/2560537.

106

https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1145/54289.871709
https://www.microsoft.com/en-us/research/publication/singularity-rethinking-the-software-stack/
https://www.microsoft.com/en-us/research/publication/singularity-rethinking-the-software-stack/
https://www.microsoft.com/en-us/research/publication/an-overview-of-the-singularity-project/
https://www.microsoft.com/en-us/research/publication/an-overview-of-the-singularity-project/
https://github.com/kpreid/e-on-cl
https://doi.org/10.1145/2560537

[40]

[43]

[44]

[45]

[46]

[47]

[49]

I. Kuz, G. Klein, C. Lewis, and A. C. Walker. capDL: A Language for Describ-
ing Capability-Based Systems. In Asia-Pacific Workshop on Systems (APSys),
pages 31-35, New Delhi, India, Aug. 2010.

S. Marr. smarr/SOMns: SOMns: A Newspeak for Concurrency Research.
https://github.com/smarr/S0Mns. GitHub repository.

N. D. Matsakis and F. S. Klock. The Rust Language. In Proceedings of the
2014 ACM SIGAda Annual Conference on High Integrity Language Technology,
HILT ’14, page 103-104, New York, NY, USA, 2014. Association for Comput-
ing Machinery. ISBN 9781450332170. doi: 10.1145/2663171.2663188. URL
https://doi.org/10.1145/2663171.2663188.

M. S. Miller. The E language. http://erights.org/elang/, . Website.

M. S. Miller. Welcome to ERights.Org. http://erights.org/index.html,
. Website.

M. S. Miller. Robust Composition: Towards a Unified Approach to Access Con-
trol and Concurrency Control. PhD Thesis, Johns Hopkins University, May
2006.

M. S. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay. Caja: Safe
active content in sanitized JavaScript. https://www.researchgate.
net/publication/248520657_Caja_Safe_active_content_in_

sanitized_JavaScript, June 2008. Technical Report, Google, Inc.

M. S. Miller, T. V. Cutsem, and B. Tulloh. Distributed Electronic Rights in
JavaScript. In ESOP’13 22nd European Symposium on Programming, 2013.
URL https://research.google/pubs/pub40673/.

S. Moore, C. Dimoulas, D. King, and S. Chong. SHILL: A secure shell scripting
language. In 11th USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI 14), pages 183-199, Broomfield, CO, Oct. 2014. USENIX
Association. ISBN 978-1-931971-16-4. URL https://www.usenix.org/

conference/osdil4/technical-sessions/presentation/moore.

M. Nevill. An evaluation of capabilities for a multikernel. Master’s the-
sis, ETH Zurich, 2012. URL https://barrelfish.org/publications/
nevill-master-capabilities.pdf. Systems Group Masters Thesis Nr.
46.

107

https://github.com/smarr/SOMns
https://doi.org/10.1145/2663171.2663188
http://erights.org/elang/
http://erights.org/index.html
https://www.researchgate.net/publication/248520657_Caja_Safe_active_content_in_sanitized_JavaScript
https://www.researchgate.net/publication/248520657_Caja_Safe_active_content_in_sanitized_JavaScript
https://www.researchgate.net/publication/248520657_Caja_Safe_active_content_in_sanitized_JavaScript
https://research.google/pubs/pub40673/
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/moore
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/moore
https://barrelfish.org/publications/nevill-master-capabilities.pdf
https://barrelfish.org/publications/nevill-master-capabilities.pdf

[50]

[51]

[56]

[57]

S. Peters, A. Danis, K. Elphinstone, and G. Heiser. For a microkernel, a big
lock is fine. In Asia-Pacific Workshop on Systems (APSys), Tokyo, JP, July
2015. ACM.

Rainer Hahnekamp. JavaScript essentials: why you should know

how the engine works. https://www.freecodecamp.org/news/
javascript-essentials-why-you-should-know-how-the-engine-works-c2cc0d321553/.
Website Article.

Y. Rezgui. Permissionless is the future of Storage on
Android. https://medium.com/androiddevelopers/
permissionless-is-the-future-of-storage-on-android-3fbceeb3d70a,
October 2022. Medium Article from Android Developers, "The official An-

droid Developers publication on Medium".

M. Seaborn. Plash: the Principle of Least Authority shell. https://www.
cs.jhu.edu/"seaborn/plash/plash-orig.html. Website.

Second State. Containerization on the edge. https://www.secondstate.
io/articles/wasmedge-sel4d/, 2021. Website Article, Accessed: 2022-11-
08.

Second State. second-state/wasmedge-seL4: Integrate WasmEdge with seL4.
https://github.com/second-state/wasmedge-sel4, 2021. GitHub
Repository, Accessed: 2022-11-08.

Simple Object Machine. SOM: Simple Object Machine. https://som-st.
github.io/. Website.

A. Singhania, 1. Kuz, M. Nevill, and S. Gerber. Capability Management
in Barrelfish. Technical Note 013, ETH Zurich, June 2017. URL https:
//barrelfish.org/publications/TN-013-CapabilityManagement.

pdf.

[58] J. Tate-Gans and S. Leffler. Announcing KataOS and Spar-
row. https://opensource.googleblog.com/2022/10/
announcing-kataos-and-sparrow.html, October 2022. Blog Post,

Google Open Source Blog.

TC39 Proposal. tc39/proposal-compartments: ~ Compartmentaliza-
tion of host behavior hooks for]JS. https://github.com/tc39/

108

https://www.freecodecamp.org/news/javascript-essentials-why-you-should-know-how-the-engine-works-c2cc0d321553/
https://www.freecodecamp.org/news/javascript-essentials-why-you-should-know-how-the-engine-works-c2cc0d321553/
https://medium.com/androiddevelopers/permissionless-is-the-future-of-storage-on-android-3fbceeb3d70a
https://medium.com/androiddevelopers/permissionless-is-the-future-of-storage-on-android-3fbceeb3d70a
https://www.cs.jhu.edu/~seaborn/plash/plash-orig.html
https://www.cs.jhu.edu/~seaborn/plash/plash-orig.html
https://www.secondstate.io/articles/wasmedge-sel4/
https://www.secondstate.io/articles/wasmedge-sel4/
https://github.com/second-state/wasmedge-seL4
https://som-st.github.io/
https://som-st.github.io/
https://barrelfish.org/publications/TN-013-CapabilityManagement.pdf
https://barrelfish.org/publications/TN-013-CapabilityManagement.pdf
https://barrelfish.org/publications/TN-013-CapabilityManagement.pdf
https://opensource.googleblog.com/2022/10/announcing-kataos-and-sparrow.html
https://opensource.googleblog.com/2022/10/announcing-kataos-and-sparrow.html
https://github.com/tc39/proposal-compartments
https://github.com/tc39/proposal-compartments

proposal-compartments. Github Repository, various authors including
Mark Miller.

[60] corbet. Two new system calls: splice() and sync_file_range(). https://
lwn.net/Articles/178199/, April 2006. Article.

[61] The Pony Developers. Object Capabilities - Pony Tutorial.
https://tutorial.ponylang.io/object-capabilities/
object-capabilities.html, . Official Pony Language Tutorial website.

[62] The Pony Developers. ponylang/ponyc: Pony is an open-source,
actor-model, capabilities-secure, high performance programming language.

https://github.com/ponylang/ponyc, . GitHub Repository.

[63] The Qt Company. Qt for WebAssembly | Qt 5.15. https://doc.qt.io/
qt-5/wasm.html. Documentation Website.

[64] Tobias Wrigstad. Dala: A simple capability-based dynamic language
design for data race-freedom. https://www.youtube.com/watch?v=
2Su47a8cxuw, 2021. YouTube Video of Presentation from Onward! Papers
2021, part of SPLASH 2021.

[65] Trustworthy Systems. Using Rump kernels to run unmodified
NetBSD drivers on sel4. https://research.csiro.au/tsblog/
using-rump-kernels-to-run-unmodified-netbsd-drivers-on-seld/,

March 2017. Trustworthy Systems Blog Post.

[66] Trustworthy Systems Team, Data61. sel.4 Manual - v12.1.0. http://sel4.
systems/Info/Docs/sel4-manual-12.1.0.pdf,.

[67] Trustworthy Systems Team, Data61. Release Process | seL4 docs. https://
docs.sel4.systems/processes/release-process, accessed: Novem-
ber 10 2022, .

[68] M. von Tessin. The Clustered Multikernel: An Approach to Formal Verification
of Multiprocessor Operating-System Kernels. PhD thesis, School of Computer
Science and Engineering, UNSW, Sydney, Australia, Sydney, Australia, Dec.

2013.
[69] W3C First Public Working Draft Document. WebAssem-
bly Core Specification. URL https://www.w3.org/TR/2022/

WD-wasm-core-2-20220419/.

109

https://github.com/tc39/proposal-compartments
https://github.com/tc39/proposal-compartments
https://github.com/tc39/proposal-compartments
https://lwn.net/Articles/178199/
https://lwn.net/Articles/178199/
https://tutorial.ponylang.io/object-capabilities/object-capabilities.html
https://tutorial.ponylang.io/object-capabilities/object-capabilities.html
https://github.com/ponylang/ponyc
https://doc.qt.io/qt-5/wasm.html
https://doc.qt.io/qt-5/wasm.html
https://www.youtube.com/watch?v=2Su47a8cxuw
https://www.youtube.com/watch?v=2Su47a8cxuw
https://research.csiro.au/tsblog/using-rump-kernels-to-run-unmodified-netbsd-drivers-on-sel4/
https://research.csiro.au/tsblog/using-rump-kernels-to-run-unmodified-netbsd-drivers-on-sel4/
http://sel4.systems/Info/Docs/seL4-manual-12.1.0.pdf
http://sel4.systems/Info/Docs/seL4-manual-12.1.0.pdf
https://docs.sel4.systems/processes/release-process
https://docs.sel4.systems/processes/release-process
https://www.w3.org/TR/2022/WD-wasm-core-2-20220419/
https://www.w3.org/TR/2022/WD-wasm-core-2-20220419/

[70]

[71]

[73]

[74]

W3C Recommendation Document. WebAssembly Core Specification. URL
https://www.w3.org/TR/wasm-core-1/.

WasmEdge (Cloud Native Computing Foundation Sandbox project).
Supported WASM And WASI Proposals - WasmEdge Runtime.
https://wasmedge.org/book/en/features/proposals.html. Page
from WasmEdge documentation, Accessed: 2022-11-08, Last update: 2021-
10-27 (see documentation source at https://github.com/WasmEdge/
WasmEdge/blob/master/docs/book/en/src/features/proposals.
md).

WebAssembly System Interface Subgroup. WASI/Proposals.md at main - We-
bAssembly/WASI. https://github.com/WebAssembly/WASI/commits/
main/Proposals.md, 2019. Document in GitHub Repository, Accessed:
2022-11-08, Last update: 2022-10-04.

WebAssembly System Interface Subgroup. WASI/README.md at main -
WebAssembly/WASI. https://github.com/WebAssembly/WASI/blob/
main/README.md, 2019. README of GitHub Repository, Accessed: 2022-
07-11, Last update: 2022-03-02.

WebAssembly System Interface Subgroup. WASI |. https://wasi.dev/,
2019. Website, Accessed: 2022-11-08.

110

https://www.w3.org/TR/wasm-core-1/
https://wasmedge.org/book/en/features/proposals.html
https://github.com/WasmEdge/WasmEdge/blob/master/docs/book/en/src/features/proposals.md
https://github.com/WasmEdge/WasmEdge/blob/master/docs/book/en/src/features/proposals.md
https://github.com/WasmEdge/WasmEdge/blob/master/docs/book/en/src/features/proposals.md
https://github.com/WebAssembly/WASI/commits/main/Proposals.md
https://github.com/WebAssembly/WASI/commits/main/Proposals.md
https://github.com/WebAssembly/WASI/blob/main/README.md
https://github.com/WebAssembly/WASI/blob/main/README.md
https://wasi.dev/

	List of Figures
	Abstract
	seL4 + OS Capabilities Background
	Operating System Capabilities
	seL4 System Calls and Programming Model
	seL4 Capabilities
	seL4 Protection Domains
	seL4 IPC and blocking semantics
	seL4 boot process + root task capability bootstrap
	`Memory Server' example

	Object-Capability Language background
	Confined Execution
	Vats and remote objects

	Project Motivation and current seL4 tooling review
	Survey of Object-Capability Languages and appropriateness for mapping
	E
	Jessie / Secure EcmaScript
	SHILL
	Dala
	Pony
	Other related art
	Rust - cap-std and ferros crates
	WebAssembly + WebAssembly System Interface (WASI)
	Microsoft Singularity Project

	Pony Background
	The Pony language + execution model
	Compilation model and libponyrt runtime
	Runtime components and API
	Pony capabilities
	Standard Library authorities
	Sample Pony program
	`Causal' messaging
	`Distributed Pony'

	Comparison of related concepts in Pony and seL4
	Synchronous v.s. asynchronous models
	Message-passing message size
	Pony allocation sizes v.s. seL4 object sizes
	Memory Address spaces
	Capability enforcement / Trust boundaries
	API contracts over message-passing channels
	Authority for memory allocation

	Possible useful Pony ocap models for seL4 programming
	Handing off/around seL4 IPC endpoint(s) for talking to objects
	Remote actor communication through message pump endpoint
	Handing off physical memory that contains data
	Embed seL4 capability types into Pony types

	Porting the Pony runtime environment to seL4
	Which runtime components to port first? Analysis of the main() procedure of a Pony program
	Step 1: base seL4 environment
	Step 2: porting the allocator
	Step 3: porting the SPMC messages queues
	Future steps: scheduling, actor heaps, garbage collection

	Conclusions

